C.S.S Form

Enter all the information specified in the various fields.

* Indicates required question

ARTICLE INFO

- 1. PMID *
- 2. Enter article link from https://pubmed.ncbi.nlm.nih.gov/
- 3. Year Published(e.g., 2021) *

ACTIVATOR PROTEIN or SIGNALING MOLECULE, A

Activator, A is a protein or signaling molecule which initiates a causal association with a Target protein, C

- 4. Activator A (Provide full name E.g., Tumor necrosis factor_alpha) *
- Activator A acronym (Provide an acronym for the widely used name of the protein. * E.g., <u>Tumor necrosis factor</u> alpha is called TNFa)

^A Supplementary Material 1 for Vanugopal S (2023) Teaching Scientific Literature Analysis: A Systematic Adoption of Skill-Building Methods to Enrich Research Training for Undergraduate Students. J Undergrad Neurosci Educ 22(1):A74-A81.

- Activator A UniProt ID: Click on the link <u>https://www.uniprot.org/</u> and find the UNIPROT ID for the protein and enter here. E.g., Unitprot ID for the <u>Tumor necrosis</u> <u>factor</u> alpha receptor-1 in MOUSE is P25118 · TNR1A_MOUSE. Choose the correct species based on the study. If no UniProt ID available, enter N/A
- 7. Classifier based on primary function of A

Mark only one oval.

Oytokine

Neurotransmitter

- Chemokine
- Free Radicals (e.g., NO, ROS etc.)
- Voltage-Gated Ion Channel
- Neurotransmitter Receptor
- Cytokine Receptor
- Chemokine Receptor
- Other:
- 8. Activator A cell type or source

Mark only one oval.

- Neuron
- Microglia
- Astrocyte
- Extrinsic application
- Transgene-based activation
- Other
- Not reported

EFFECTOR PROTEIN or SIGNALING MOLECULE, E

 D:40 PM Supplementary Material 1 for Vanugopal S (2023) Teaching Scientific Literature Analysis: A Systematic Adoption of Skill-Building Methods to Enrich Research Training for Undergraduate Students. J Undergrad Neurosci Educ 22(1):A74-A81.
P. EFFECTOR E

(Provide full name e.g., <u>Tumor necrosis factor</u> alpha)

- 10. EFFECTOR E acronym (Provide an acronym for the widely used name of the protein. E.g., <u>Tumor necrosis factor</u> alpha receptor is called TNFR-1)
- 11. EFFECTOR E UniProt ID: Click on the link <u>https://www.uniprot.org/</u> and find the UNIPROT ID for the protein and enter here. E.g., Unitprot ID for the <u>Tumor necrosis</u> <u>factor</u> alpha receptor-1 in mouse is P25118 · TNR1A_MOUSE. Choose the correct species based on the study. If no UniProt ID available, enter N/A

12. Classifier based on primary function of E

Mark only one oval.

	\bigcirc	Cytokine
--	------------	----------

- Neurotransmitter
- Chemokine
- Free Radicals (e.g., NO, ROS etc.)
- Voltage-Gated Ion Channel
- Neurotransmitter Receptor
- Cytokine Receptor
- Chemokine Receptor
- Other:

PM Supplementary Material 1 for Vanugopal S (2023) Teaching Scientific Literature Analysis: A Systematic Adoption of Skill-Building Methods to Enrich Research Training for Undergraduate Students. J Undergrad Neurosci Educ 22(1):A74-A81.

13. EFFECTOR E cell type or source

Mark only one oval.

Neuron

Microglia

Astrocyte

Other

Not reported

TARGET PROTEIN or SIGNALING MOLECULE, T

This is called TARGET, T

- 14. TARGET, T (Provide full name e.g., Voltage-Gated Sodium Channel Subunit)
- 15. TARGET T (Provide an acronym for the widely used name of the protein. E.g., Nav1.1). If none reported, enter, N/A
- TARGET T UniProt ID: Click on the link <u>https://www.uniprot.org/</u> and find the UNIPROT ID for the protein and enter here. E.g., Unitprot ID for the <u>Tumor necrosis</u> <u>factor</u> alpha receptor-1 in mouse is P25118 · TNR1A_MOUSE. Choose the correct species based on the study.

Supplementary Material 1 for Vanugopal S (2023) Teaching Scientific Literature Analysis: A Systematic Adoption of Skill-Building Methods to Enrich Research Training for Undergraduate Students. J Undergrad Neurosci Educ 22(1):A74-A81.

17. Classifier based on primary function of T

Mark only one oval.

- Cytokine
- Neurotransmitter
- Chemokine
- Free Radicals (e.g., NO, ROS etc.)
- Voltage-Gated Ion Channel
- Neurotransmitter Receptor
- Cytokine Receptor
- Chemokine Receptor
- Other:

18. TARGET, T cell type

Mark only one oval.

- Neuron
- Microglia
- Astrocyte
- Other
- Not reported

EXPERIMENTAL ASSAY INFO

In the following, you will provide some of the technical details of the approach(es) used to evaluate functional associations

Supplementary Material 1 for Vanugopal S (2023) Teaching Scientific Literature Analysis: A Systematic Adoption of Skill-Building Methods to Enrich Research Training for Undergraduate Students. J Undergrad Neurosci Educ 22(1):A74-A81.

19. Select one or more experimental assay(s)

Check all that apply.

Primary cell culture
Fresh brain tissue
Slice preparation
Fixed tissue sections
Blood or cerebrospinal fluid
Cell line derived culture
Stem cell derived culture
Other:

20. Animal Model/Species

Check all that apply.

Mouse
Rat
Human
Invertebrate
Other vertebrate
Other

21. Age of the specimen

Check all that apply.

In vitro cell line or cell culture systems (e.g., for Days in vitro, DIV10-DIV14)

Neonatal (e.g., for mouse and rats, P0-P4)

Postnatal (e.g., for mouse and rats, P4-P21)

Adult (e.g., for mouse and rat, >P21)

- Disease end stage (e.g., in animal models of disease or human postmortem periods)
- Other

10/22/23.	10.40	PM
10/22/20,	10.40	1 101

PM Supplementary Material 1 for Vanugopal S (2023) Teaching Scientific Literature Analysis: A Systematic Adoption of Skill-Building Methods to Enrich Research Training for Undergraduate Students. J Undergrad Neurosci Educ 22(1):A74-A81.

22. Is the experimental assay and/or model system based on brain diseases or neurotrauma?

Mark only one oval.

\square	$\Big)$	Yes
\subset	\supset	No

23. Brain Region: Click on the link below and refer to the Allen Brain Atlas to enter the full name and acronym in parentheses for the brain region reported. https://mouse.brain-map.org/experiment/thumbnails/100048576?image_type=atlas

EXPERIMENTAL VALIDATION METHODS INFO

24. Activator A or Effector E Activation Method

Mark only one oval.

- Extrinsic application of A or agonist activation of E (In vivo, in vitro pharmacology)
- Electrical stimulation of source cell types
- Transgenetic overexpression/suppression of A or E
- Other
- Not reported
- 25. List experimental method(s) used for **Target Expression** Validation (e.g., Immunocytochemistry etc.; N/A if not present)

PM Supplementary Material 1 for Vanugopal S (2023) Teaching Scientific Literature Analysis: A Systematic Adoption of Skill-Building Methods to Enrich Research Training for Undergraduate Students. J Undergrad Neurosci Educ 22(1):A74-A81.

- 26. List experimental method(s) used to characterize **pleiotropic signaling/function changes** in Target, T (e.g., receptor binding assay, voltage-clamp electrophysiology, etc.; N/A if none)
- List experimental method(s) used to characterize **neurophysiological changes** (Ca2+ recording, Patch-clamp electrophysiology, Extracellular recording etc.; N/A if none)

FUNCTIONAL EFFECTS

Select the type of functional effects observed on the TARGET protein/signaling molecule. Also select any effects on neurophysiology functions. PPM Supplementary Material 1 for Vanugopal S (2023) Teaching Scientific Literature Analysis: A Systematic Adoption of Skill-Building Methods to Enrich Research Training for Undergraduate Students. J Undergrad Neurosci Educ 22(1):A74-A81.

28. Functional Effect Type(s)

Check all that apply.

	Increase	Decrease	No Effect	Not Tested
Neurophysiology - Intrinsic Plasticity (e.g., increase in membrane currents or action potential firing)				
Neurophysiology - Structural Plasticity (e.g., Dendritic Remodeling)				
Neurophysiology - Synaptic Plasticity				
Neurophysiology - Neuroprotection				
Neurophysiology - Neurotoxicity				

29. THIS PRA DOES NOT FIT INCLUSION CRITERIA BECAUSE....

This content is neither created nor endorsed by Google.

10/22/23, 10:40 PM

^M Supplementary Material 1 for Vanugopal S (2023) Teaching Scientific Literature Analysis: A Systematic Adoption of Skill-Building Methods to Enrich Research Training for Undergraduate Students. J Undergrad Neurosci Educ 22(1):A74-A81.