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The way in which neurons encode information remains a 
hotly debated topic in neuroscience.  Lin and colleagues in 
a 2014 article in the journal Nature Neuroscience 
demonstrate how sparse coding in the olfactory learning and 
memory center of Drosophila can influence learning 
behavior.  Coding sparsity is the idea that only a small 
number of neurons in a network represent any given 
stimulus.  Using neurogenetics, computational 
neuroscience, and cognitive approaches, they outline the 
discovery of an inhibitory feedback circuit responsible for 
differentiating the neuronal response to different odors.  
Manipulating this feedback circuit, they demonstrate how 
the sparseness in neural networks (how easily neurons are 

activated) can correspond to the ability to learn a sensory 
discrimination more easily.  From a research perspective, 
this paper was important as it was the first causal 
demonstration of the role of sparseness in learning.  From a 
teaching point of view, this paper is valuable because it is a 
simple but effective introduction to artificial neural network 
theory, where both the abstract theory and the importance 
of its application is apparent to those without a mathematical 
or computational background. 
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In 2014, Lin and colleagues published an article that 
demonstrates how a concept from artificial neural networks, 
sparse coding, applies to empirical neuroscience research.  
Given the increasing crosstalk between those studying 
artificial and biological neural networks, it is important to 
introduce neural network theory to neuroscience students in 
a way that is neither superficial nor esoteric.  The present 
article walks through how Lin and colleagues achieved this 
balance.   
     Coding sparsity is a concept that was first used to 
describe neural representation in the 60s by David Marr and 
James Albus (Marr, 1969; Albus, 1971).  While working on 
the cerebellum they observed that the number of neurons 
active at any given time was surprisingly small, this is 
referred to as a sparse code.  Coding sparsity describes how 
many neurons are active in response to stimuli, and how 
many stimuli neurons are activated by.  The sparsest 
networks are local codes in which single neurons respond 
to stimuli (Willmore and Tolhurst, 2001).  On the other side 
of the spectrum lie dense codes, where many neurons are 
active during stimulus presentation, and many of the same 
neurons respond to different stimuli (Foldiak, 2002).  A 
happy medium between these two extremes are sparse 
codes, where a small number of neurons are active in 
response to stimuli, and only a small number of stimuli 
activate any neuron. 
     Initially it was not clear that sparse coding had any 
special significance until it was implemented in theoretical 
models of learning in neural networks.  These early 
‘perceptrons’ were loose models of neurons connected by 
adjustable weights (see Anderson, 1995 for an introductory 
textbook).  By adjusting these weights, perceptrons can 
learn simple patterns.  However, as the number of patterns 
‘taught’ to a perceptron increases, the time taken to teach 
the pattern increases exponentially (Albus, 1971). 

     Albus noted that pattern recognition in perceptrons could 
be made more powerful by restricting how many of the 
‘neurons’ were allowed to be active at any one time. The 
introduction of a sparse code into the perceptrons resulted 
in faster learning of patterns (Albus, 1971) as well as an 
increased number of patterns that could be stored (Tsodyks 
and Feigel'man, 1988).  
     Since the advantage of sparse coding was theoretically 
proposed, other sparse codes have been reported for 
sensory areas (Crochet et al., 2011; Barth and Poulet, 2012) 
and in the motor cortex (Beloozerova et al., 2003). However, 
the paper by Lin and colleagues (2014) represents the first 
time a causal relationship has been drawn between sparse 
coding and learning in vivo.  By using Drosophila, a less 
complex and more genetically tractable organism which 
nonetheless exhibits learning behavior, they were able to 
circumvent many of the difficulties linking neural 
representation to behavior in more complex organisms.  
     Olfactory information is processed in the mushroom 
bodies, two structures on each side of the Drosophila brain.  
The mushroom bodies (MB) contain Kenyon cells (KCs), 
which respond to olfactory information.  Kenyon cells exhibit 
a sparse code, meaning that only a small percentage of 
them respond to a given odor (Turner et al., 2008). 
     Lin and colleagues hypothesized that KCs might 
contribute to their own sparse coding via feedback inhibition 
(where KC activity results in KC inhibition).  This was based 
on findings from other sparse-coding systems which have 
suggested that recurrent feedback causes sparse coding 
(Papadopoulou et al., 2011), and the finding that GABA is 
required for sparse coding in the Drosophila MB (Lei et al., 
2013).  To test this, they expressed temperature-sensitive 
shibire (shits1) in KCs.  Shits1 is a mutation of the dynamin 
protein which is normally involved in the endocytosis of 
synaptic vesicles (Chen et al., 2002). At temperatures above 
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32°C, the mutated dynamin stops functioning, blocking 
endocytosis, and leads to a loss of synaptic transmission by 
neurotransmitter depletion  (Poodry and Edgar, 1979; 
Koenig et al., 1989), without directly affecting the intrinsic 
excitability of the cell. At the same time, they expressed the 
calcium ion indicator, GCaMP3 in KCs to measure excitation 
in the Kenyon cells.  They found that inhibiting KC 
transmission by raising the temperature reduced the overall 
activity of KCs compared to a control group without the shits1 
gene.  This suggested that the KCs inhibit their own activity.  
     One candidate for inhibition was via a pair of neurons – 
one for each mushroom body – called anterior paired lateral 
neurons (APL).  APL was chosen because: a) an analogue 
neuron performing the same role was discovered in locusts 
(Papadopoulou et al., 2011); and b) Only when shits1 was 
expressed in all lobes of the MB did inhibition occur. This 
suggests that the output from the KCs is integrated into a 
single signal.  Candidate neurons would be predicted to 
widely innervate a large proportion of the KC population, as 
APL does. 
     To test the effect of KC activity on APL neurons, Lin and 
colleagues expressed the TRPA1 gene in KCs.  This gene 
encodes a cation channel that opens at warm temperatures, 
causing excitation.  Again, they expressed GCaMP3 to 
measure APL activity and found that inducing KC excitation 
caused APL excitation.  Additionally, expressing shits1 in the 
APL neurons increased the Kenyon cell response, 
suggesting a negative feedback circuit where KCs excite 
APL and APL inhibits KCs (Figure 1). 
     If many of the same neurons were activated by odors 
(i.e., the code is not sparse) activity patterns between odors 
would be similar.  On the other hand, if the code is sparse, 
the activity pattern should be distinct across different odors.  
When APL was inhibited, the activity pattern became more 
similar among different odors.  In other words, inhibiting APL 
reduced coding sparsity.  
     At this point, they had a way to manipulate the sparsity 
of neural encoding in an awake, behaving animal, providing 
the ability to test the hypothesis that computational theory 
had predicted: that sparse codes lead to enhanced learning.   
 

 
Figure 1.  The results suggest that excitatory KC output is 
integrated into a single negative feedback signal that acts to make 
the KC code sparse.      

They hypothesized that inhibiting APL neurons (using the 
same shits1 as before) would impair learning for similar 
odors, because the odor representations would interfere 
with each other but would have less of an effect for dissimilar 
odors or on odor coding in general.  Dissimilar odors are 
represented by distinct sets of neurons, and so would enjoy 
less of a distinguishing effect from APL. While similar odors, 
without the sparse-inducing influence of APL, would have an 
overlapping representation, preventing differentiation.  To 
test this, they presented flies with an odor shortly before 
giving them a small electric shock.  They put flies into a T-
maze with one odor on one side, and another odor on the 
other to see if the flies would avoid the odor that is 
associated with shock.  When flies were given the choice 
between an odor that was previously paired with shock, and 
another dissimilar odor, inhibiting APL had no effect.  
However, when the two odors were similar, flies for whom 
the APL neurons were inhibited were impaired in their ability 
to avoid the odor that had not been paired with shock 
compared to controls.  This implies that the feedback 
inhibition - and by extension the sparser coding - resulted in 
an increased ability to learn to discriminate between similar 
sensory stimuli. 
 
VALUE 
This paper was the first to draw a casual link between 
sparsity of neural coding and learning. It also demonstrates 
the application of findings from artificial networks to 
biological ones.  Transplanting ideas and concepts from 
artificial neural networks has been a fertile ground for current 
neuroscientific insight (e.g., Whittington and Bogacz, 2019). 
It is important that students are exposed to the value of this 
kind of work, and also to the computational mindset in 
neuroscience.  There are many different applications of 
artificial neural network theory to neuroscience, but the 
current paper represents a uniquely relevant case in that: a) 
the underlying theory is based on perceptron models, which 
are intuitively understandable to a non-expert and do not 
require a strong grasp of mathematics; and b) it is one of 
only a small number of papers that clearly and causally tests 
the predictions of artificial network theory, as opposed to an 
interpretation of correlational data.  In a classroom, 
discussions could take place around whether the simple 
perceptron is an appropriate simplification of a biological 
neural network, as well as what this finding in the Drosophila 
odor system means for the sparse codes found elsewhere 
in more complex organisms (Foldiak, 2002; Quiroga et al., 
2005; Poo and Isaacson, 2009). 
     Furthermore, this paper highlights the usefulness of 
genetically tractable, model organisms like Drosophila.  
Though likely familiar to students taking a more biological 
neuroscientific approach, the use of Drosophila is less 
common in cognitive neuroscience.  Indeed, cognitive 
approaches often neglect the significance of seemingly 
simple organisms which nonetheless are capable of 
demonstrating relatively complex behavior. This paper 
stands as an elegant counterpoint to this way of thinking. 
 
AUDIENCE 
The paper, along with some general background on sparse 
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coding would present a challenging yet accessible paper for 
a third or fourth-year undergraduate.  Featuring work from 
computational, genetic, and cognitive neuroscience, this is 
a truly interdisciplinary paper that could appeal to students 
interested in any or all of those areas. 
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