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Conducting neuroscience research increasingly requires 
proficiency in coding and the ability to manipulate and 
analyze large datasets.  However, these skills are often not 
included in typical neurobiology courses, partially because 
they are seen as accessory rather than central, and partially 
because of the barriers to entry.  Therefore, this lesson plan 
aims to provide an introduction to coding in Python, a free 
and user-friendly programming language, for instructors and 
students alike.  In this lesson, students edit Python code in 
the Jupyter Notebook coding environment to interact with 

cutting-edge electrophysiology data from the Allen Institute 
for Brain Science.  Students can run their own experiments 
with these data to compare cell types in mice and humans.  
Along the way, they gain exposure to Python coding and the 
role of coding in the field of neuroscience. 
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Neuroscience datasets are increasing in size, complexity, 
and access to the public.  Various datasets, such as those 
collected by the Allen Institute for Brain Science, are 
available for students to see real neuroscience data and 
conduct their own analyses.  Such data can be used in 
course-based undergraduate research experiences 
(CUREs), which have proven to be a powerful means of 
exposing diverse students to real-world research and 
inviting these students into genomics and molecular biology 
(Makarevitch et al., 2015; Kjelvik and Schultheis, 2019).  
CUREs, especially when implemented with free, publicly-
available resources, can provide access to the field of 
neuroscience to anyone who is interested.    
     Recently, various reports have commented on the need 
for additional training to enable students to analyze large 
datasets in neuroscience (Akil et al., 2016; Grisham et al., 
2016, 2017).  Furthermore, there is an increasing demand 
for students to acquire coding skills for research and non-
related career paths beyond our field.  It is imperative that 
we offer undergraduate experiences in both of these 
domains – big data analysis and coding – to best prepare 
them for success beyond college.   
     Despite the importance of these skills, many students 
hold preconceived notions about what it means to be a 
“coder” and feel that – even as undergraduates – they’ve 
already missed their opportunity to learn how to code (Qin, 
2009; Lewis et al., 2016a).  Programming classes are not 
required in many biology or neuroscience programs, and at 
large universities, these classes can exist in very different 
academic spheres on campus (Pinard-Welyczko et al., 
2017).  It is imperative that we open the door to coding for 
our biology and neuroscience undergraduates, even with 
small doses of exposure in our classes, which have been 
shown to improve attitudes towards coding (Du et al., 2016).  
The activities described here introduce students to the 
Python coding language, which is freely available, relatively 
easy to learn, and widely used in neuroscience research and 
beyond (Muller et al., 2015; Perkel, 2015).    
     The Allen Institute for Brain Science makes available 

multiple datasets for public and educational use.  Many 
educators have used these datasets to provide students 
with interesting, real world examples of neuroscience data, 
especially data that is difficult to collect in an undergraduate 
laboratory (e.g., Ramos et al., 2007; Jenks, 2009; Gilbert, 
2018).  These datasets come with rich metadata as well as 
an active community of researchers, which makes the use 
of this data particularly straightforward.   
     One of these datasets, The Allen Cell Types Database, 
(http://celltypes.brain-map.org) contains whole-cell in vitro 
patch clamp recordings from both mouse and human cortex.  
These recordings have been used by the Allen Institute as 
well as other researchers to demonstrate fascinating 
differences between mouse and human cells, and well as 
between cell types within a species (Kalmbach et al., 2018; 
Gouwens et al., 2019). 
     There are two primary ways to interact with the Allen Cell 
Types dataset: through their website, or programmatically, 
through the Allen Institute’s Software Development Kit 
(SDK).  While interacting with the website enables users to 
visualize the data as well as analyze individual experiments, 
the SDK enables custom analyses across many individual 
experiments within the Allen Cell Types dataset.  By 
interacting with the SDK, users can choose species, cell 
types, or variables to compare, and perform their own 
“pseudo-experiments” on the data. 
     Using these data, instructors can introduce students to 
the diversity of cell types, even just within the cortex (Ascoli 
et al., 2008; DeFelipe et al., 2013; Jiang et al., 2015).  In 
typical neuroscience textbooks, students are exposed to just 
one canonical example of an action potential.  With 
recordings from a variety of different cell types in mice and 
humans, the Allen Institute data demonstrate the diversity of 
action potential shapes and therefore the cellular 
mechanisms that generate action potentials.  In addition, the 
dataset contains many pre-computed features that capture 
passive properties of the membrane (e.g., input resistance 
and resting membrane potential) as well as metrics derived 
from action potential trains elicited from an injection of 
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current (e.g., adaptation). 
      The Cell Types Lesson described here introduces 
students to this rich dataset, exposing them to real 
electrophysiology data and the types of metrics that can be 
used to compare and contrast cell types in the mammalian 
brain.  Throughout the readings, lectures, and activities, 
students are asked to consider how passive membrane 
properties and intrinsic electrophysiology relate to the 
composition of the membrane as well as the function of 
neurons and ultimately behavior (e.g., Sabatini and Regehr, 
1997; Toledo-Rodriguez et al., 2004; Cui et al., 2018).  The 
Allen Cell Types dataset also contains information on 
whether the cells are spiny or aspiny and can therefore be 
used to introduce students to the role of dendritic spines. 
     Within the supplied notebooks, students will reveal how 
the presence of spines correlates with the shape of the 
action potential.  Students are also invited to choose a 
feature (e.g., input resistance, see Appendix 1 for all 
features) and test whether or not this feature is more similar 
across mouse and human cells or across spiny and aspiny 
neurons within a species. 
     Specifically, the learning objectives for the provided 
materials are as follows: 

 Relate the diverse intrinsic electrophysiological 
features of neurons to their structure and function 

 Compare electrophysiological characteristics of 
neurons in humans and mice 

 Practice using Jupyter Notebooks to run and edit 
Python code 

 Develop a sense of belonging and self-efficacy in 
coding and neuroscience research 

     Although many students may initially be wary of learning 
how to code, these lessons provide a scaffolded, 
neuroscience-specific introduction to programming that can 
make the benefits of learning how to code more immediately 
clear. 
 
IMPLEMENTATION 
These activities were first implemented in an upper-division 
Neurobiology Laboratory course taught at a large, R1 
university, but can be adapted for different course needs.  
Students in our course had previous neuroscience content 
knowledge but almost no coding experience (see RESULTS 
for details). 

     Instructors may choose to use the web-based version of 
the lesson plan, without incorporating any coding activities 
(Figure 1).  Those that opt to include coding activities can 
choose how much coding skill-building to expect from 
students.  These activities can be used in lecture classes or 
in laboratory classes – educators can adapt these activities 
for their classes as they see fit.  All of the materials for these 
lessons can be found at the companion website for this 
paper (http://sites.google.com/ucsd.edu/neuroedu). 
     After assigning a pre-reading or viewing (see examples 
in Table 1), instructors should introduce students to several 
key concepts that intersect with this dataset, specifically:      
whole-cell patch clamp recording, characterizing passive  

 

 
 
Figure 1.  Possible workflows for implementing these activities.  
Instructors can choose to implement this lesson without any coding 
components (Steps 1-3).  If instructors would like to minimally 
expose students to coding, they can include the Introduction to 
Jupyter Notebooks and the Coding-Light Cell Types Notebook (4-
5a).  To teach students more coding skills, instructors can opt for 
the coding-focused Cell Types notebook (4-5b).  One “session” 
here is a ~50 minute lecture (or 50 minutes of a lab class). 

Article / Video Link Brief Description 
Allen Cell Types Database: Understanding the 
fundamental building blocks of the brain 

https://youtu.be/1GWy
jxzxqII  

Brief introduction to the goals and methods of the Allen 
Cell Types database 

Whole cell patch clamp electrophysiology https://youtu.be/TUoC
QTwewVo  

Demonstration of how whole cell patch clamping is 
performed at the institute, particularly in human tissue 

Classification of electrophysiological and 
morphological neuron types in the mouse visual 
cortex 

https://www.nature.co
m/articles/s41593-
019-0417-0  

Primary paper related to this dataset; provides an 
overview of the dataset as well as scientific findings 
regarding the classification of neuron types  

h-Channels Contribute to Divergent Intrinsic 
Membrane Properties of Supragranular 
Pyramidal Neurons in Human versus Mouse 
Cerebral Cortex 

https://www.cell.com/n
euron/fulltext/S0896-
6273(18)30900-0  

Study that uses this data to compare mouse and human 
recordings, demonstrating differences in the expression 
of h-channels  

Table 1.  Possible pre-readings and viewings related to this activity.  Table is arranged in increasing complexity.  For the primary papers, 
instructors may want to scaffold these papers or select specific figures, depending on the course and student population. 
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and stimulus-driven electrophysiology recordings, and 
dendritic spines.  Sample slide decks and additional 
materials can be found on the accompanying website. 
     If pursuing the coding versions of this lesson, instructors 
can also introduce basics of coding (variables, if/else 
conditionals, and loops) as well as the specific tools (e.g., 
Jupyter Notebooks) used in this lab.  Instructors may also 
choose to assign coding lessons on free online platforms 
(e.g., DataQuest, CodeAcademy) before completing the 
coding activities here.   
 
Web-Based Introduction 
With this background, students can then dive into the web-
based introduction to the Allen Cell Types dataset (Appendix 
2 or companion website).  This introduction walks them 
through the major features of the data and asks the students 
to look for specific features to compare mouse and human 
neurons (“Data Notebook,” Appendix 3).  Instructors can 
orient the students to different aspects of the data 
depending on their course goals.  For example, instructors 
that introduce f/I curves to students may ask them to 
investigate the f/I curves plotted on the electrophysiology 
page (Figure 2).   
     After completing the web-based introduction, students 
were asked to complete an assessment (“Data Notebook”, 
Appendix 3) aimed to assess their understanding of the 
dataset and the methods used to collect the data. 
 
Python Coding in Jupyter Notebooks 
The coding aspects of this lesson plan are implemented 
within Jupyter Notebooks (https://jupyter.org).  These 
notebooks are built with an iPython kernel and can be 
opened and run in a browser window either with a local or 
cloud installation of Python.   Usefully, the notebooks 
provided here can be entirely run in a web-browser, using 
either Google Colaboratory (Colab, 

https://colab.google.com) or Binder (https://mybinder.org).  
Both Colab and Binder create a web-based, online coding  
environment to run Jupyter Notebooks (see Figure 3 for a 
comparison of interfaces).  If instructors would prefer to run 
these notebooks locally, students and instructors can install 
Anaconda (https://www.anaconda.com/products/individual) 
which usefully comes installed with several key packages 
for scientific computing that are used within these notebooks 
(e.g., NumPy and Pandas). 
     The code for all of these notebooks, along with links to 
load the notebooks in Colab or Binder, can be found on 
GitHub  (https://github.com/ajuavinett/CellTypesLesson) or 
the companion website.  For use on a local computer, the 
notebooks can be acquired using git, or the entire repository 
of code can be downloaded as a .zip from GitHub. 
     Recognizing that many biology instructors may 
themselves be new to coding, the provided Jupyter 
Notebooks do not assume any coding background and 
provide an entry level to coding in Python.  The “Introduction 
to Jupyter Notebooks” tutorial teaches students how to write 
and run code in Jupyter Notebooks, and is a necessary step 
to completing the subsequent Cell Types Lesson notebook.  
There are “Task” cells for students to complete throughout 
the introductory notebook, but there was no assessment 
directly tied to the “Introduction to Jupyter Notebooks.” This 
notebook also cites additional resources for students or 
instructors who would like to learn more about Python 
coding and using Jupyter Notebooks. 
     After completing the introductory notebook, students can 
move on to either of the cell types notebooks.  There are two 
versions of the Cell Types notebook: one which asks 
students to interact with the dataset programmatically but 
does not ask them to practice coding (“coding-light,” Figure 
1), and one that is coding-focused, in which students are 
students, as well as student interest.  With the coding-light 
version, students will be exposed to assigning variables, 
 

 
 
Figure 2.  Screenshots of interfaces included in this lesson plan.  (A) Sample data on the Allen Institute website, which features a recording 
from an aspiny mouse neuron.  The webpage provides information about the neuron, raw sweeps of a recording, as well as some 
computed electrophysiological features, including an f/I curve (top right).  Students can click on “View Morphology” in the top right corner 
to see the filled cell.  (B) Jupyter Notebook interface.  Jupyter Notebooks contain both code and descriptive cells, and can show plots 
(including raw recording traces) within the notebook. 
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Figure 3.  Screenshots of the native Jupyter Notebook or Binder (top) and Google Colaboratory (bottom) code and markdown cells.  Note 
that there is a “Run cell” button to the left of the cell (black circle with white arrow) in the Colab environment.  The color of different coding 
aspects (often called “syntax highlighting”) differs between interfaces as well.  Beyond these superficial differences, these interfaces work 
very similarly. 
 
using Booleans, and editing plots, but will not be asked to 
generate code on their own.  In the coding-focused version, 
expected to learn basic coding concepts (“coding-focused,” 
Figure 1).  The choice of these two tracks depends on how 
much time there is to dedicate to troubleshooting with 
students manipulate more code and also learn the basics of 
plotting both timeseries data and scatterplots in Python. 
     Within both notebooks, students are introduced to 
scatterplots as a means of comparing the waveforms of 
spiny and aspiny cells.  Specifically, students are led through  
an activity which asks them to plot the upstroke-downstroke 
ratio of the cell compared to the trough (after-
hyperpolarization depth), which demonstrates clear 
differences in the waveforms of spiny (putative excitatory) 
and aspiny (putative inhibitory) cells.  This demonstrates 
that neurons can have dramatically different looking action 
potentials and illustrates that action potential shape can 
correspond to other features of the cell.   
  In the second half of the Cell Types Notebook, students 
can choose from pre-computed electrophysiology features 
contained in the dataset to compare between mouse and 
human cells and effectively run their own experiment.  These 
features are either passive membrane properties (e.g., input 
resistance, resting membrane potential), subthreshold -
features (e.g., sag), or are derived from either single spikes 
(e.g., peak, afterhyperpolarization trough) or from action 
potential trains elicited by current injections (e.g., 
adaptation, latency).  Many of the variable labels for these 
features are opaque; see Appendix 1 for a glossary of 
features that may be of interest.  Depending on the existing 
course content, instructors may choose one or two of these 
to illustrate the point that intrinsic electrophysiological 

properties determine a given neuron’s response dynamics 
and determine the way it can encode information about 
external stimuli. 
    For the coding-light Cell Types Lesson, students are 
asked to save the plots created throughout the Jupyter 
Notebook (Figure 4).  For the coding-focused Lesson, we 
also asked students to complete a corresponding Jupyter 
Notebook that was automatically graded using a tool called 
NBGrader (https://nbgrader.readthedocs.io/).  With small 
classes, these coding assessments could easily be 
manually graded.  Interested instructors should contact the 
author for assessment materials related to this lesson plan. 
 
RESULTS 
This lesson plan has been implemented in various iterations 
with five different neurobiology lab classes, ranging in size 
from 20-37 students.  This neurobiology lab course typically 
includes additional coding activities after these lessons, 
which serve as the introduction to coding and the use of big 
data in neuroscience.  We assessed attitudes towards this 
lesson in two different classes, with 10 respondents from 
each class. 
     Before completing these lessons, most of our students 
(75%, n=20) had no experience coding in Python, and none 
of the students (0%, n=20) had experience working in 
Jupyter Notebooks.  Even still, we found that with careful 
explanation and tutorials about how to manipulate Python 
code in Jupyter Notebooks, students quickly gained 
proficiency in working through these materials.    
     After completing either the coding-light or coding-
focused version of the Cell Types Notebook, two different  
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Figure 4.  Sample plots that can be generated with the cell types 
notebooks.  Within the notebooks, students can (A) observe the 
differences in action potential shapes based on the ratio of the 
action potential upstroke to downstroke (B) generate an 2D image 
of the morphology of the same cell (C) compare a chosen 
parameter (here, input resistance) between mouse and human 
cells and (D) compare a chosen parameter (here, slope of the f/I 
curve between spiny and aspiny neurons). 
 
classes were asked to report on what they liked most and 
least aboutthe lesson (Figure 5).  Regardless of the lesson’s 
coding level, most of the respondents reported liking the 
exposure to Python coding and Jupyter Notebooks, and 
many appreciated that this lesson involved real data (Figure 
5A).  With the coding-light version of the laboratory, students 
largely fell into two camps: students who wished the lesson 
contained more coding training, and students who were 
content with the amount of coding involved (Figure 5). 
     In open-ended responses to the coding-light lesson, 
students expressed a range of opinions.  In line with their 
survey responses (Figure 5), several expressed frustration 
about their first attempt at coding, whereas others 
expressed frustration that there wasn’t much depth.  One 
student expressed initial frustration with the Jupyter 
interface: “The layout of Jupyter notebook was tricky to 
figure out at first.” Still, many students recognized the utility 
of learning how to code, and the difficulty that accompanies 
learning any new skill.  For example, one student reported, 
“It was more tedious than I thought it would be.  The program 
is very detail-oriented which was, at times, difficult but I 

learned a lot.”  
     On the whole, many students felt that they had learned 
some programming and several reported an increase in 
interest in coding.  In response to the question, “Any other 
feedback you'd like to provide about this lecture or lab?” one 
student wrote, “It was really cool to be introduced to coding 
in a way that's applicable to neurobiology/neurophysiology.  
I've always wanted to learn how to code but it would take 
away time from my classes, but now that it's incorporated 
into one of my classes it was a really cool and enjoyable 
experience.” 
 
DISCUSSION 
This article describes a lesson plan and set of resources for 
instructors to empower their students to learn a bit of coding 
and interact with cutting-edge neuroscience data.  As 
programming is increasingly embedded in neurobiology and 
adjacent fields, it is increasingly important to expose our 
students to these skills.  This lesson plan builds on a 
growing body of ideas from other educators on how to 
integrate computational modeling and big, open access data 
analysis in our classrooms (Ramos et al., 2007; Grisham et 
al., 2016, 2017; Gilbert, 2018; Gorur-Shandilya et al., 2018). 
 
Implementation of These Lessons 
These resources are modular and can              
be implemented in a variety of classrooms by instructors 
with a variety of backgrounds (Figure 1).  Given ample time 
and student enthusiasm (instructors should consider asking 
students ahead of time how interested they are in coding), it 
is certainly possible to introduce even a completely naïve 
coding group to some elementary concepts via these lesson 
plans.    
     The ideal implementation of these lessons depends on 
the instructor’s background and programming resources 
available on campus.  At our university, the use of a campus 
JupyterHub has proven exceptionally helpful for 
implementing these and similar coding lessons for both 
biology and computer science classes.  As others have 
noted, JupyterHub can usefully be configured with a specific 
version of Python and with dependencies installed (Laderas, 
2018, https://laderast.github.io/2018/01/17/what-we-
learned-teaching-python-to-neuroscience-students/).   
However, newer tools such as Google Colaboratory and 
Binder have proven to be very powerful click-and-go options 
for Jupyter Notebooks, and can be used without any on 
campus support. 
 
Reflections on Student Responses 
Based on our cohorts of students that completed these 
activities, students were overall very positive about their 
experience, the introduction to these electrophysiology 
principles, and the exposure to coding in Python (Figure 5).  
After reflecting on our final course evaluations, it was clear 
that these activities, along with several similar lessons, 
helped our students develop a better understanding of the 
diversity of neurons in the brain, the means by which we can 
characterize them, and the use of coding as a tool in 
neuroscience research. 
     Although some students found the programming 

A 

B 

D C 
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Figure 5.  Two different groups of students (n = 10 each) received different versions of the Cell Types Lesson (coding-light and coding-
focused) and were asked which aspects of the lab they liked (A) or disliked (B).  Students could choose multiple options for each question, 
as well as provide open-ended responses.   
 
environment “tricky at first,” they quickly developed 
proficiency.  With both coding-light and -focused versions of 
this activity, we observed students’ perceptions about 
coding change, largely in a positive direction, but also in 
unexpected ways.  One student’s comments that the 
notebooks were “tedious” highlights a frequent mismatch 
between student expectations and the reality of coding: 
many students expect coding to be math-heavy and full of 
jargon, but actual coding requires sometimes “tedious” 
attention to detail and debugging with limited actual math. 
     After initial cohorts of students had completed the 
coding-light activities, it was clear that many students had 
hoped for more coding challenges.  We therefore developed 
the coding-focused track, not without its own difficulties.  
Students in this track were varied in their comfort with the 
lesson.  Several students reported feeling frustrated with the 
plotting aspects of the lesson, likely because this is where 
the majority of the challenge in these notebooks originated.  
Further, many students have experience plotting data in a 
graphical interface such as Microsoft Excel, and therefore 
may be frustrated by the seemingly opaque way plots are 
manipulated in Python. 
     On the whole, students seemed to appreciate the 
exposure to “real world” neuroscience, and several students 
in the class went on to pursue internships at the Allen 
Institute.  With real data that is actively being collected and 
analyzed by real neuroscientists, this lesson plan enables 
students to experience real neuroscience research. 
 
Extensions of These Materials 
Given the number of pre-computed features in the Cell 
Types dataset, there are many neuroscience principles that 

can be taught with these resources.  For example, 
instructors can explain the implications of the adaptation 
index and interspike interval for sensory coding or learning 
(e.g., Reich et al., 2000), emphasize the importance of 
injecting “noisy” in addition to square wave  currents, or 
discuss the implication of other morphological features, 
such as the cell’s surface area.  While cell surface area and 
rheobase are not readily obtained via the primary lesson 
plan described here, there is an additional notebook on 
GitHub (CompareCellFeatures.ipynb) for students to work 
with a prepared dataset to compare surface area, input 
resistance, tau, and the rheobase of mouse and human 
cells. 
     Lastly, the Allen Institute has recorded from cells from 
over a hundred different transgenic mouse lines, which 
selectively mark cells based on their expression of a 
particular promoter (Madisen et al., 2010; Harris et al., 
2014).   This genetic strategy can be used to selectively 
mark excitatory or inhibitory neurons, or neurons in a 
specific layer of the cortex.  As an extension of the 
notebooks here, students could compare specific 
populations of transgenic cell types.  For example, students 
could compare PV+ inhibitory cells to Emx1+ excitatory cells 
(Gorski et al., 2002).  There are additional Jupyter 
Notebooks to accomplish this type of analysis on GitHub. 
 
Teaching Discipline-Based Coding 
Just as important as the tools, however, is an understanding 
of the preconceived notions about coding that our students 
bring into our classrooms (Qin, 2009; Donohue et al., 2012; 
Du et al., 2016; Lewis et al., 2016b; Gaudier-Diaz et al., 
2019).  While this work begins to assess students’ attitudes 
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towards coding, much more work needs to be done with 
these and other teaching materials to fully understand how 
we should teach discipline-based coding to diverse learners 
who have categorically decided that they are not “math 
people.” Additional work should be done to assess students’ 
sense of belonging and self-efficacy in the intersection of 
neuroscience and computation, as has been done in other 
fields of biology and physics (Hazari et al., 2010; Trujillo and 
Tanner, 2014).  As the job force continues to move towards 
big data and analytics, understanding the perspectives of 
our students – particularly those from under-resourced 
backgrounds – is not only a question of neuroscience 
education, but also of equity.   
     Like learning any new language, learning how to code 
takes time and patience.  As with other complex new skills, 
working deliberately through materials and clearly setting 
expectations for students will ease concerns and enable 
learning (Trujillo and Tanner, 2014).  However, introducing 
coding within the context of neurobiology can invite 
additional students into an otherwise very daunting field.  It 
is important that instructors approach these lessons with 
care, explaining to students that errors are inevitable and 
that the computer is frustratingly literal, but ultimately, these 
may be important skills to learn in our ever-evolving and 
expanding field. 
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APPENDIX 1: 
GLOSSARY OF FEATURES AVAILABLE VIA THE get_ephys_features()METHOD 

 
Note that several of the variable names contain additional information about whether the measurement is in time (_t) or 
voltage (_v) and in response to which type of stimulus (_short_square = 3ms; _long_square = 1s; or _ramp = 25 pA/1s.  
“Trough” was chosen rather than “after-hyperpolarization” since in many cases the membrane potential did not 
hyperpolarize below the baseline membrane potential.  Additional features can be computed from the data using the 
EphysSweepFeatureExtractor.  See https://allensdk.readthedocs.io as well as the Allen Institute Whitepaper for more 
information: http://help.brain-map.org/download/attachments/8323525/CellTypes_Ephys_Overview.pdf. 
 
 

Variable Description Related neuroscience principles 
adaptation The rate at which firing speeds up or slows down 

during a stimulus, defined as: 

1
𝑁 െ 1

෍
𝐼𝑆𝐼௡ାଵ െ 𝐼𝑆𝐼௡
𝐼𝑆𝐼௡ାଵ ൅ 𝐼𝑆𝐼௡

ேିଵ

௡ୀଵ

 

where N is the number of interspike intervals (ISIs) in 
the sweep 

Learning and memory, integration 
of inputs in single cells, sensory 
adaptation, habituation vs.   
adaptation, information 
transmission 

avg_isi The mean value of all interspike intervals in a sweep Mechanisms of an action potential, 
integration of inputs in single cells, 
information transmission 

fast_trough timestamp (_t) or voltage (_v) of the trough within in 
the interval 5 ms after the peak  in response to a 
short square stimulus (_short_square), a long square 
(_long_square), a ramp (_ramp). 

Mechanisms of an action potential, 
the role of ion channels in the 
shape of an action potential 

f_i_curve_slope slope of the curve between firing rate (f) and current 
injected; see the Allen Institute Whitepaper for details 

The relationship between input and 
firing rate 

input_resistance_mohm input resistance of the cell, in mega ohms Passive membrane properties, 
Ohm’s law 

latency time for the stimulus onset to the threshold of the first 
spike 

Integration of inputs in single cells, 
sensory integration 

peak timestamp (_t) or voltage (_v) of the maximum value 
of the membrane potential during the action potential 
(i.e., between the action potential’s threshold and the 
time of the next action potential, or end of the 
response) in response to a (_short_square), a long 
square (_long_square), a ramp (_ramp) stimulus 

Mechanisms of an action potential, 
the role of ion channels in the 
shape of an action potential 

sag measurement of sag, or the return to steady state 
divided by the peak deflection 

Ih currents, subthreshold properties 

slow_trough timestamp (_t) or voltage (_v) of the membrane 
potential in the interval between the peak and the 
time of the next action potential in response to a short 
square stimulus (_short_square), a long square 
(_long_square), a ramp (_ramp) 

Mechanisms of an action potential, 
the role of ion channels in the 
shape of an action potential 

tau membrane time constant, in ms  Passive membrane properties, 
Ohm’s law, membrane time 
constants, capacitance 

upstroke_downstroke_ratio 
 

the ratio between the absolute values of the action 
potential peak upstroke and the action potential peak 
downstroke.during a short square (_short_square), a 
long square (_long_square), a ramp (_ramp) stimulus 

Mechanisms of an action potential, 
the role of ion channels in the 
shape of an action potential 

vrest resting membrane potential, in mV Mechanisms of establishing and 
maintaining a resting membrane 
potential, role of ions and channels 
in the resting membrane potential 
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APPENDIX 2: 
ACCESSING THE ALLEN CELL TYPES DATASET ON THEIR WEBSITE 
Before we go behind the scenes, we’ll look at a few cells on the Allen Institute for Brain Science’s online interface to get a 
feel for what the data looks like. 

1. Go to http://celltypes.brain-map.org/.  Read through “About Electrophysiology” and “About Morphology” to answer 
questions 1 and 2 in the Data Notebook. 

2. Scroll down to “Download Single Cell Data and Models” and the section “Morphology and Electrophysiology” and click 
on Electrophysiology Page.  This page shows all of the electrophysiology data for one sample cell. 

3. On the top, you’ll see a Mouse Line, Brain Area, and Layer where this cell comes from.  Note them in Table 1. 

4. The Mouse Line tells us the Cre-driver line that was used — in other words, the cells that the Allen Institute 
researchers targeted had that gene, and therefore they also expressed Cre-recombinase.  Go 
to https://www.ncbi.nlm.nih.gov/gene/and search for the name of this gene (without -Cre) to answer question 3.  This 
page also gives us some key details about the cell.  Note the resting membrane potential in Table 1. 

5. Click through the stimulus sweeps (the colored boxes) to find the first one that elicited an action potential.  Record the 
minimum stimulus amplitude required to elicit an action potential in this cell in Table 1.  Note: You should notice that 
this value is either very close or identical to the rheobase of the cell, as reported on the table on the top.  As a 
reminder, the rheobase is defined as the minimum current needed to elicit an action potential.  When the current is 
below the rheobase, an action potential will never occur regardless of the length of the stimulation. 

6. Click through to a stimulus sweep with a higher current injection.  Does the cell adapt to the stimulus? In other words, 
does the space between spikes increase? Is there a metric here that would help quantify this? Record that metric in 
Table 1. 

7. Use the dropdown menu on the left to change the stimulus type to “Short square.” Look at how the current injection 
trace changes – now, it’s a shorter pulse.  Record the minimum current needed to elicit an action potential at this 
stimulus, and answer question 4. 

Wondering what these ‘square’ pulses mean? Square simply describes the shape of the stimulus, and it’s a common 
way to inject current into cells.  There are more details on the stimuli the Allen used here: 
https://raw.githubusercontent.com/ajuavinett/CellTypesLesson/master/docs/stimuli.png.  

8. Use the dropdown menu on the left to change the stimulus type to “Noise.” Take a look at the current injection trace to 
get an idea of what this stimulus looks like.  Note the differences between the cell’s response to this stimulus versus 
the square wave pulses.  Answer question 5. 

9. Click on View Morphology on the right, to check out the morphology of this cell.  Take note of the distribution of the 
axon and the dendrites.  Close this window. 

10. Click on Cell Feature Search on the top right corner.  Here, you can look through other cells in this dataset.  Find a 
cell from human tissue that is in the same Layer and has the same Dendrite Type as the first cell you looked at.  
Use the data on that page to fill out Table 1. 
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APPENDIX 3: 
DATA NOTEBOOK 
 
1. Which method are the Allen researchers using to record from cells?  

  

2. What are the cells filled with to visualize their morphology?  

  

3. Which neurotransmitter receptor does this gene code for?  

  

4. Why would a longer stimulus require less current to elicit an action potential? 

  

5. Why would you want to inject a noisy current into the cell? (Not like 60 Hz noise, what we've been talking about 
before.  "Noisy" current here is random, fluctuating around a certain value but not a perfect sine wave.  To answer this 
question, consider what happens in a real neural circuit.  Is the input as simple as a square wave?) 

  

Table 1. 

Property Mouse Human 

Cre Line 
 

N/A 

Area 
  

Layer 
  

Dendrite type 
  

Resting potential 
  

Minimum current to elicit an AP with the long square 
wave 

  

Minimum current to elicit an AP with a short square wave 
  

Adaptation index 
  

 


