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The Structural Assessment of Knowledge (SAK) is an 
implicit form of evaluation, which examines the organization 
of knowledge structures or networks.  The current study 
investigates variability in expert knowledge structures of 
neuroscience concepts, and whether different expert 
referents affect undergraduate students’ learning of 
neuronal physiology and structure and function relationships 
across different course levels.  Experts and students made 
pairwise ratings of terms on their relatedness.  Students 
completed the ratings before and after learning in the 
classroom.  Using Pathfinder software, students’ networks 
were compared to three expert networks: their individual 
professor, an average of neuroscience professors at their 
institution, and an average of neuroscience professors in the 
field across multiple institutions.  Neuroscience experts had 
large variability in the number of links in their networks.  

Furthermore, an exploratory analysis suggests experts’ 
training may differentiate knowledge structures for some 
concepts.  For student knowledge structures, the type of 
expert referent interacted with the type of class for neuronal 
physiology, but not structure and function relationships.  
More specifically, for neuronal physiology, advanced 
students were more similar to their professor than 
professors at their institution or professors in the field, but 
introductory students’ similarity did not vary by expert 
referent.  These findings highlight the role factors such as 
type of class, type of expert referent, and type of knowledge 
may play in comparisons using SAK.  These issues may be 
more complex in interdisciplinary fields like neuroscience. 
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An overarching goal of neuroscience education is to 
increase the knowledge base of neuroscience concepts 
(Kerchner et al., 2012).  Traditionally, this learning is 
evaluated with strictly a post-test explicit metric of learning 
(e.g., exam) which may not encourage deep or long-lasting 
knowledge acquisition (Momsen et al., 2010).  An alternative 
approach is to use implicit measures of learning, such as 
structural assessment of knowledge or SAK (Trumpower et 
al., 2010).   
     SAK comprises three phrases: (1) knowledge elicitation, 
in which participants rate the relatedness of pairs of 
concepts; (2) knowledge representation, or the 
transformation of a participant’s ratings into a mathematical 
and visual representation using the Pathfinder network 
scaling algorithm; and (3) knowledge evaluation, or the 
comparison of individual or group networks (see 
Schvaneveldt, 1990 for additional details on the Pathfinder 
method).   
     SAK can be used both as an instructional and 
assessment tool (for an extensive review, see Trumpower 
and Vanapalli, 2016), and has been implemented in various 
disciplines including chemistry (Wilson, 1994), computer 
programming (Trumpower et al., 2010), mathematics 
(Gomez et al., 1996; Davis et al., 2003), neuroscience 
(Stevenson et al., 2016), nursing (Azzarello, 2007), physics 
(Chen and Kuljis, 2003; Trumpower and Sarwar, 2010), and 
psychology (Beier et al., 2010).  When assessing academic 
performance, the similarity of students’ knowledge 
structures is compared with a referent – or expert – 
knowledge structure, typically the instructor (Naveh-
Benjamin et al., 1986; Goldsmith et al., 1991; Beier et al., 

2010) or group of instructors (d’Apollonia et al., 2004; 
Azarello, 2007).  Similarity between students’ knowledge 
structures and a referent knowledge structure correlates 
with traditional explicit course performance measures, such 
as grades on an exam (Goldsmith et al., 1991) or essay 
(d’Apollonia et al., 2004).   
     While referent knowledge structures using an average of 
multiple experts is generally preferred over a single expert 
(Acton et al., 1994), there are examples where experts vary 
in their knowledge organization.  For instance, knowledge 
structure organization of human computer interface varies 
depending on whether experts have knowledge in human 
factors or software development (Gillan et al., 1992).  
Similarly, knowledge structure organization of situation 
awareness behaviors varies among differing instructor roles 
(navigators or pilots) in military aviators (Fiore et al., 2000).   
     Stevenson et al. (2016) conducted the first study to 
demonstrate students’ acquisition of neuroscience concepts 
using SAK; however, students’ networks were compared to 
a single expert’s network.  Although some individuals’ 
knowledge structures may serve as a referent (Acton et al., 
1994), it is unknown whether a single expert or multiple 
experts should be used for the referent structure in 
interdisciplinary fields, like neuroscience, which provides the 
motivation for the current study. 
     More specifically, the current study explored variability in 
neuroscience experts’ structural organization of 
neuroscience concepts, and whether different expert 
referents (the class instructor, neuroscience professors at 
the institution, and neuroscience professors in the field) 
affect introductory and advanced students’ similarity to the 
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expert referent.  Due to the interdisciplinary nature of 
neuroscience, we hypothesized that neuroscience experts 
would exhibit high levels of variability in their knowledge 
structures reflective of their training and specialization (e.g., 
psychology, biology, physics).  As a result, we also 
hypothesized that students would be less similar to referents 
comprising neuroscience professors in the field than their 
class instructor due to the greater variability among multiple 
experts.  Finally, we expected students in the advanced 
class to have more similar knowledge structures to the 
expert referents than students in the introductory class, and 
that all students would be more similar to the expert 
referents after learning than before learning.   
 
MATERIALS AND METHODS 
Participants 
Seventeen individuals (11 female, 6 male) who attained their 
Ph.D. in a neuroscience-related field between 1970 and 
2014 were used as experts in the study.  Experts were 
recruited through a listserv of faculty who teach 
undergraduate courses in neuroscience or because they 
taught neuroscience courses at Ursinus College (including 
JLS and JPB due to the size of the neuroscience program).  
Expert faculty received a $25 gift card for their participation.   
     Students were recruited from either their introductory 
psychology course (n = 24), their advanced behavioral 
neuroscience course (n = 16), or their advanced cognitive 
neuroscience course (n = 38) to participate in the study for 
extra credit.  These courses were selected due to their topics 
of neuronal physiology (e.g., oligodendrocyte, threshold) or 
brain anatomy and function (e.g., anterior cingulate, 
language comprehension).   
     This study was approved by the Ursinus College 
Institutional Review Board. 
 
Materials and Procedure 
JLS and JPB constructed five sets of neuroscience concept 
terms: a set of 15 terms related to neuronal physiology (i.e., 
action potential, axon hillock, axon terminal, dendrite, 
depolarization, ion channel, neuron, oligodendrocyte, 
receptor, resting potential, reuptake, saltatory conduction, 
summation, synapse, and threshold), a set of 16 terms 
related to brain structure and function (i.e., thalamus, long-
term memory, hypothalamus, language production, 
hippocampus, facial processing, prefrontal cortex, visuo-
spatial processing, anterior cingulate, executive function, 
fusiform gyrus, language comprehension, posterior parietal 
lobe, working memory, Broca's area, and theory of mind), a 
set of 15 terms related to gross brain anatomy (i.e., 
amygdala, basal ganglia, cerebellum, cerebral cortex, 
cerebrospinal fluid, corpus callosum, forebrain, hindbrain, 
hippocampus, hypothalamus, medulla, midbrain, meninges, 
pons, thalamus), a set of 16 terms related to statistics and 
research methods (i.e., control group, correlation coefficient, 
dependent variable, experimental group, independent 
variable, normal distribution, significance, probability, 
causation, randomization, standard deviation, reliability, 
validity, variability, type I error, generalizability), and a set of 
15 terms related to neuroscience techniques (i.e., confocal 
microscopy, DTI, EEG, electroporation, extracellular 

recording, fluorescence, fMRI, fNIR, intracellular recording, 
MEG, MRS, patch clamp, PCR, TMS, VBM).  The sets of 
terms related to neuronal physiology and gross brain 
anatomy were used in a previous study (Stevenson et al., 
2016). 
     Five different Pathfinder programs were constructed (one 
for each of the domains).  Each program contained every 
possible pairing of the terms for a given list (e.g., 210 
concept pairs for neuronal physiology program with 15 terms 
including receptor-reuptake and reuptake-receptor).  Each 
participant was asked to rate each concept pairing based on 
the terms’ relatedness to each other, on a scale from 1 (not 
at all related) to 7 (extremely related) on a computer using 
JRate (open source software available from Interlink Inc. at 
http://www.interlinkinc.net).  JLS and JPB aimed to create a 
representative set of terms that included key terms, terms 
within a hierarchy (e.g., general and specific), and terms that 
linked together conceptually.  For each concept set, this 
process was slightly different.  For example, for 
neuroscience techniques, JLS and JPB considered factors 
such as representativeness of molecular/cellular, 
behavioral, and cognitive neuroscience techniques, as well 
as the goal of the technique (e.g., visualization of structure).   
     The expert participants completed all five programs, but 
only once.  Experts were assigned one of two orders to 
complete the five programs.  Experts were asked to 
download JRate.jar to their computer via a link that was 
provided to them by the research team.  Once installed, the 
experts downloaded the files for the respective programs 
and then ran the files to complete the pairwise ratings.  After 
completion of all programs, experts were additionally asked 
to complete a background questionnaire on Qualtrics survey 
software to assess their rank, the year in which their doctoral 
degree was awarded, their gender, their particular training 
(e.g., biology, psychology, physics), their self-reported 
familiarity with the domains, the frequency in which they 
teach the concepts of each domain, their self-reported 
undergraduate training in each domain, and their self-
reported graduate training in each domain.  Experts were 
asked to complete all five programs to help establish a 
database of expert knowledge structures that could be used 
for the current study, as well as ongoing and future studies 
of students’ neuroscience knowledge structures.   
     The students enrolled in the introductory psychology 
course were invited to complete both the neuronal 
physiology program (n = 24) and the brain structure and 
function program (n = 21).  Students in the advanced 
behavioral neuroscience course completed the neuronal 
physiology program only, and students in the advanced 
cognitive neuroscience course completed the brain structure 
and function program only.  In the current study, JPB was 
the instructor for the introductory psychology course; JLS 
and JPB were the instructors for the advanced cognitive 
neuroscience course; a third professor at the institution was 
the instructor for the advanced behavioral neuroscience 
course.  The student participants completed their respective 
program twice, at two separate points in time: one time 
before they had covered that particular material in their 
respective class (i.e., pre-learning), and one time after they 
had covered that particular content in the class (i.e., post-
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learning).   
       Network relatedness ratings were derived using 
JPathfinder (open source software available from Interlink 
Inc. at http://www.interlinkinc.net) using q = n-1 and r = inf.  
JPathfinder was also used to compare individual 
participants’ networks (including students’ pre- and post-
learning) to an expert comparison network.  Individual 
Pathfinder networks were averaged using medians to create 
group networks for these comparisons (i.e., professors at 
the institution and professors in the field).  Figure 1 displays 
sample networks for neuronal physiology concepts for the 
different expert referent groups.  Sample introductory 
student networks compared to a single network were 
provided in Stevenson et al. (2016). 
 
Data Analysis 
Analyses were conducted to assess variability in expert 
knowledge structure.  In addition to descriptive statistics, 
Pearson correlations were used to assess relationships 
between experts’ self-reported familiarity with the topic, 
undergraduate training in the topic, and graduate school 
training in the topic with number of links, coherence, and 
corrected similarity to a single expert, separately for each 
domain.  In these analyses expert participants were 
compared to one expert, JPB, who was used as the expert 
in a previous study (Stevenson et al., 2016) due to his 
experience teaching various neuroscience courses and 
coordinating the neuroscience program. 
    An exploratory analysis to assess whether experts’ 
graduate training can account for variability in knowledge 
structure was conducted.  Only experts who identified 
training in psychology (n = 4) or biology (n = 5) were used in 
this analysis because they were the two most commonly 
identified training areas.  Other experts self-reported training 
in physics (n = 1), pharmacology (n = 1), neuroscience (n = 
2), neuropharmacology (n = 1), molecular neurobiology (n = 
1), and both biology and psychology (n = 1).  JPB whose 
training was in psychology was not included in this analysis 
as he was the expert referent.  A 2 (training) x 5 (domain) 
mixed-design Analysis of Variance (ANOVA) was conducted 
to examine whether experts’ training or domain had an effect 
on corrected similarity with a single expert.   
    To compare student knowledge structures to a reference 
knowledge structure, three types of expert referent 
knowledge structures were computed: the class instructor (n 
= 1), professors at the institution excluding the class 
instructor (n = 4), and professors in the field at 
undergraduate institutions excluding professors at the 
institution (n = 12).  Corrected similarity was calculated with 
the three types of experts.   
     To assess changes in student knowledge structures, two 
2 x 2 x 3 mixed-design ANOVAs were conducted to evaluate 
the effect of type of expert referent (professor, institution, or 
field), type of class (introductory or advanced), and time 
(pre- or post-learning) on the corrected similarity between 
participants and the referent network, for both neuronal 
physiology and brain structure and function relationships.   
     In all analyses, similarity is defined as C / (Links1 + 
Links2 – C) where C refers to the number of links (i.e., 

 
 

 
Figure 1.  Pathfinder maps for three different expert comparison 
groups for neuronal physiology concepts: the instructor of the 
introductory course (top), professors at the institution (middle), and 
professors in the field (bottom). 
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 Links Coherence Corrected 
Similarity 

Neuronal 
Physiology 

27.29 
(8.00) 

0.42 
(0.20) 

0.24  
(0.08) 

Structure- 
Function 

30.53 
(17.85) 

0.40 
(0.23) 

0.15  
(0.12) 

Gross  
   Anatomy 

27.18 
(10.39) 

0.44 
(0.15) 

0.24  
(0.10) 

Methods/ 
Statistics 

30.65 
(20.38) 

0.33 
(0.21) 

0.14  
(0.06) 

Techniques 33.06 
(21.67) 

0.56 
(0.28) 

0.12  
(0.07) 

 
Table 1.  Descriptive statistics of metrics of experts’ knowledge 
structures for the five domains.  Similarity and corrected similarity 
are compared with one expert’s knowledge structure (JPB).  Means 
are provided with standard deviations in parentheses. 
 
connections between nodes) in common between the 
participant and the referent network, Links1 refers to the 
total number of links in the participant network and Links2 
refers to the total number of links in the referent network.  
Corrected similarity is then similarity minus the similarity 
expected by chance.  Finally, coherence is an indirect 
measure of similarity and reflects consistency of ratings.   
 
RESULTS 
Expert Knowledge Structure Variability 
The number of links and coherence of the experts’ 
knowledge structures for the five domains was extremely 
variable, as shown in Table 1.  For example, in terms of the 
number of links, neuronal physiology was the least variable 
domain (SD = 8.00) whereas neuroscience techniques was 
the most variable domain (SD = 21.67).  Variability was more 
consistent in terms of coherence, with the least variable 
domain being gross brain anatomy (SD = 0.15) and the most 
variable domain being neuroscience techniques (SD = 
0.28).  
     Variability in experts’ knowledge structures is also 
apparent when comparing their similarity to a single expert 
as shown in Table 1.  In some cases, the standard deviation 
is almost numerically equivalent to the mean (e.g., brain 
structure and function relationships: M = 0.15, SD = 0.12).   
     Pearson correlations revealed positive relationships 
between experts’ self-reported expertise and self-reported 
graduate school training in four of the five domains: neuronal 
physiology, r(15) = 0.57, p = 0.02; gross brain anatomy, r(15) 
= 0.60, p = 0.01; research methods and statistics, r(15) = 
0.75, p < 0.001; and neuroscience techniques, r(15) = 0.60, 
p = 0.01.  The relationship between experts’ self-reported 
expertise and self-reported graduated school training in 
brain structure and function relationships was not significant, 
r(15) = 0.39, p = 0.12.  However, experts’ self-reported 
familiarity and training in a domain was not significantly 
related to measures of their knowledge structure.  The only 
significant relationship was self-reported familiarity with 
neuroscience techniques and coherence, r(15) = 0.66, p = 
0.004.   
     Exploratory analyses revealed there was a significant 
main effect of domain on experts’ corrected similarity to a 
single expert (JPB whose graduate training was in 

psychology; F(4, 28) = 4.96, p = 0.004, 2
partial = 0.41).  The 

interaction between domain and type of graduate training 
was marginally significant (F(4, 28) = 2.22, p = 0.09, 2

partial 
= 0.24).  As shown in Figure 2, experts with graduate training 
in psychology tended to have greater corrected similarity to 
a single expert for gross brain anatomy (t(7) = 2.92, p = 0.08, 
d = 0.67).  No other pairwise comparisons approached 
significance (all ps > 0.10). 
 
Student Knowledge Structure 
For neuronal physiology, there were significant main effects 
of type of expert referent (F(2, 76) = 5.93, p = 0.004, 2

partial 
= 0.14), and type of class (F(1, 38) = 21.43, p < 0.001, 2

partial 
= 0.36).  There was also a significant interaction between 
type of expert referent and type of class (F(2, 76) = 5.27, p 
= 0.007, 2

partial = 0.12).  No other main effects or interactions 
were significant (all ps > 0.05). 
     As shown in Figure 3, introductory students’ corrected 
similarity in knowledge structures of neuronal physiology did 
not vary depending on type of expert (all ps > 0.05).  In 
contrast, advanced students had more corrected greater 
similarity with their professor than professors at their 
institution (t(15) = 3.13, p = 0.007, d = 0.78) or professors in 
the field (t(15) = 2.57, p = 0.02, d = 0.64) for knowledge of 
neuronal physiology.  They did not differ in similarity 
between professors at their institution compared with 
professors in the field for knowledge of neuronal physiology 
(t(15) = -1.87, p = 0.08, d = -0.47). 
     For brain structure and function relationships, there were 
significant main effects of time (F(1, 57) = 6.14, p = 0.02, 
2

partial = 0.10), and type of class (F(1, 57) = 37.77, p < 0.001, 
2

partial = 0.40).  No other main effects or interactions were 
significant (all ps > 0.05).  As shown in Figure 4, all students 
were more similar to expert referents at post-learning than 
pre-learning, and advanced students were more similar to 
expert referents than introductory students for knowledge of 
brain structure and function relationships. 
 
DISCUSSION 
Neuroscience experts demonstrated a large degree of 
variability in their knowledge structures when assessed via 
the number of links present, coherence, and similarity to a 
single expert.  This was consistent with our hypothesis, 
 

  
Figure 2.  Experts’ corrected similarity with a single expert by 
domain and experts’ graduate training.  Error bars represent ±1 SE. 
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Figure 3.  Students’ corrected similarity by type of student, pre- and 
post- learning, and type of expert referent for neuronal physiology.  
Error bars represent ±1 SE. 
 
given the interdisciplinary nature of the field, and suggests 
that some, but not all experts may be appropriate as a single 
referent for comparison networks (Acton et al., 1994).  
Experts’ self-reported expertise in a content area was 
positively correlated with their self-reported training in the 
content area; however, their self-reported familiarity and 
training was unrelated to knowledge structure metrics with a 
single expert.  Experience and training correlate with 
knowledge structure metrics (Goldsmith et al., 1991; Davis 
and Yi, 2004) but these relationships have not previously 
been explored in experts and warrants further investigation. 
     Variability among experts’ knowledge structures may 
partially be explained by their training.  Exploratory analyses 
revealed experts with a background in psychology were 
marginally more similar to a single expert for brain structure 
and function relationship concepts than experts with a 
background in biology.  This is consistent with past research 
that found differing roles (Fiore et al., 2000) and experience 
(Gillan et al., 1992) can affect the organization of experts’ 
knowledge structures.  The current study had a relatively 
small number of experts (n = 17) which meant the 
subsamples based on training experience were quite small.  
A future study that explores the specific role of type of 
training and expertise (e.g., cognitive neuroscience versus 
neurobiology) may help tease apart the variability among 
experts’ knowledge structures.  Furthermore, future 
research should consider other ways to assess individual 
experts.  For example, individual expert networks could be 
compared to every other expert network, non-referent 
measures of comparison could be used (e.g., coherence, 
number of links) to compare similarity between various 
groups of experts based on institutions and experience 
teaching.   
     The similarity of students’ knowledge structures to 
experts significantly increased over time for brain structure 
and function relationships, but not for neuronal physiology, 
which is consistent with previous research (Stevenson et al., 
2016).  However, as expected, advanced students’ 
knowledge structures were more similar to expert networks 
than introductory students for both neuronal physiology and 
brain structure and function relationships.  Thus, the 
knowledge structure of students appears to become more 
similar to experts with greater training.  Combined, these 
results suggest that SAK is effective at demonstrating long-

term changes in knowledge structure for both types of 
concepts from introductory to advanced levels; however, 
detection of short-term changes in knowledge structure may 
be dependent on content or other factors (e.g., teaching 
style).   
     Students’ knowledge structures’ similarity to an expert 
referent depended on the type of class (introductory or 
advanced), the type of expert referent (professor, institution, 
or field), and the type of knowledge (neuronal physiology or 
brain structure and function relationships).  Advanced 
students learning neuronal physiology were more similar to 
their professor than professors at their institution or 
professors in the field.  However, the type of expert referent 
did not affect similarity of knowledge structures for 
introductory students learning neuronal physiology, and all 
students learning brain structure and function relationships.  
These findings should be replicated to ensure they are not 
due to potential confounds in the data; for example, 
professors at the institution differed from professors from the 
field in several ways, including their gender ratio and 
average time since Ph.D., which may have affected the 
results.   
     Collectively, these results suggest the referent network 
may affect evaluation of student knowledge structures.  
Neuroscience experts are variable in their training which 
may lead to greater variability in the organization of their 
knowledge structures (Gillan et al., 1992; Fiore et al., 2000).  
Depending on your goal, and the content being assessed, 
the “best” referent may vary.  For neuronal physiology, 
students were most similar to their course instructor.  
Additionally, a single expert (i.e., the instructor) may be the 
best referent for an implicit measure of learning course 
content, if multiple experts (i.e., multiple instructors) are not 
available or do not have similar training (e.g., a small 
neuroscience program with one person trained in 
cellular/molecular neuroscience and one person trained in 
cognitive neuroscience).  However, multiple experts may be 
desirable in other situations, such as when evaluating a 
program’s effectiveness.   
     Future studies could explore other alternatives for 
average networks.  Top performing students have been 
successfully used to create a referent network (Diekhoff, 
1983; Acton et al., 1994; Rowe et al. 1997).  Another 
alternative might be to have multiple experts work 
 

 
Figure 4.  Students’ corrected similarity by type of student, pre- and 
post- learning, and type of expert referent for brain structure and 
function relationships.  Error bars represent ±1 SE. 
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together to create the referent network; for example, Barab 
et al.  (1996) had 100% agreement among three experts in 
a study of hypermedia navigation.  Additionally, each 
Neuroscience program may have a specific focus (e.g., 
cognitive neuroscience, neurophysiology) that may alter the 
focus of the curriculum and shape the way in which a faculty 
member may instruct or organize their course; thus, 
additional comparisons of networks based on subdisciplines 
within neuroscience would be invaluable.   
     Similar to Stevenson et al. (2016), the current study 
focused on short-term learning and it was impractical to 
directly relate students’ course performance (e.g., exam 
grades) with SAK metrics.  Future studies may consider the 
relationship between students’ explicit course performance 
and SAK metrics for the different types of expert referents 
which may further help address what referent is better at 
predicting course performance.  Additionally, a future study 
focuses on longer-term assessment of the curriculum, 
investigating differences between newly declared 
neuroscience majors and students near graduation. 
     SAK continues to show promise as a technique for 
neuroscience faculty to evaluate what their students have 
learned, regardless of what grade they have achieved.  
However, the expert referent should be considered.  
 
REFERENCES 
Acton WH, Johnson PJ, Goldsmith TE (1994) Structural knowledge 

assessment: Comparison of referent structures. J Educ Psychol 
86:303-311.  

Azzarello J (2007) Use of the Pathfinder scaling algorithm to 
measure students’ structural knowledge of community health 
nursing. J Nurs Educ 46:313-318.  

Barab SA, Fajen BR, Kulikowich JM, Young MF (1996) Assessing 
hypermedia navigation through Pathfinder: Prospects and 
limitations.   J Educ Comput Res 15:185-205. 

Beier ME, Campbell M, Crook AE (2010) Developing and 
demonstrating knowledge: Ability and non-ability determinants of 
learning and performance. Intelligence 38:179-186. 

Chen C, Kuljis J (2003) The rising landscape: a visual exploration 
of superstring revolutions in physics. J Am Soc Inf Sci Technol 
54:435-446. 

d'Appolonia ST, Charles ES, Boyd GM (2004) Acquisition of 
complex systemic thinking: Mental models of evolution.   Educ 
Res Eval 10:499-521. 

Davis MA, Curtis MB, Tschetter JD (2003) Evaluating cognitive 
outcomes: validity and utility of structural knowledge 
assessment. J Bus Psychol 18:191-206.  

Davis FD, Yi MY (2004) Improving computer skill training: behavior 
modeling, symbolic mental rehearsal, and the role of knowledge 
structures. J Appl Psychol 89:509-523.  

Diekhoff GM (1983) Testing through relationship judgments. J 
Educ Psychol 75:227-233. 

 Fiore SM, Fowlkes J, Martin-Milham L, Oser RL (2000) 
Convergence or divergence of expert mental models: The utility 

of knowledge structure assessment in training research. Proc 
Hum Factors Ergon Soc Annu Meet 44:427-430.  

 Gillan DJ, Breedin SD, Cooke NJ (1992) Network and 
multidimensional representations of the declarative knowledge 
of human-computer interface design experts. Int J Man Mach 
Stud 36:587–615. 

Goldsmith TE, Johnson PJ, Acton WH (1991) Assessing structural 
knowledge. J Educ Psychol 83:88–96.  

Gomez RL, Hadfield OD, Housner LD (1996) Conceptual maps 
and simulated teaching episodes as indicators of competence in 
teaching elementary mathematics. J Educ Psychol 88:572-585. 

Kerchner M, Hardwick JC, Thornton JE (2012) Identifying and 
using ‘core competencies’ to help design and assess 
undergraduate neuroscience curricula. J Undergrad Neurosci 
Educ 11:A27-A37.  

Momsen JL, Long TM, Wyse SA, Ebert-May D (2010) Just the 
facts? Introductory undergraduate biology courses focus on low-
level cognitive skills. CBE Life Sci Educ 9:435-440.  

Naveh-Benjamin M, McKeachie WJ, Lin Y-G, Tucker DG (1986) 
Inferring students' cognitive structures and their development 
using the "ordered tree technique." J Educ Psychol 78:130-140.   

Rowe AL, Meyer TN, Miller TM, Steuck K (1997) Assessing 
knowledge structures: Don't always call an expert. Proc Hum 
Factors Ergon Soc Annu Meet 41:1203-1207. 

Schaneveldt R (1990) Pathfinder associative networks: studies in 
knowledge organization. Norword, NJ: Ablex.  

Stevenson JL, Shah S, Bish JP (2016) Use of structural 
assessment of knowledge for outcomes assessment in the 
neuroscience classroom. J Undergrad Neurosci Educ 15:A38-
A43. 

Trumpower DL, Sarwar GS (2010) Effectiveness of structural 
feedback provided by Pathfinder networks. J Educ Comput Res 
43:7-24.  

Trumpower DL, Sharara H, Goldsmith TE (2010) Specificity of 
structural assessment of knowledge. J Technol Learn Assess 
8(5):1-32. 

Trumpower DL, Vanapalli AS (2016) Structural assessment of 
knowledge as, of, and for learning. In Learning, Design, and 
Technology: An International Compendium of Theory, Research, 
Practice, and Policy (Spector MJ, Lockee BB, Childress MD, 
eds). Switzerland: Springer International Publishing.  
https://doi.org/10.1007/978-3-319-17727-4_23-1 

Wilson JM (1994) Network representations of knowledge about 
chemical equilibrium: variations with achievement. J Res Sci 
Teach 31:1133-1147. 

 
Received January 6, 2020; revised June 22, 2020; accepted August 7, 
2020. 
 

This work was supported by Ursinus College Student Achievement in 
Research and Creativity funding to NCY. NCY worked on this project as 
an undergraduate student under JLS and JPB’s supervision.  
 

Address correspondence to: Dr. Jennifer L. Stevenson, Psychology 
Department, 601 East Main Street, Ursinus College, Collegeville, PA 
19426. Email: jstevenson@ursinus.edu  
 

Copyright © 2020 Faculty for Undergraduate Neuroscience 
 

www.funjournal.org 


