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PERSPECTIVE 
Models for Spiking Neurons: Integrate-and-Fire Units and Relaxation Oscillators  
 
Kevin Crisp 
Biology Department, St. Olaf College, Northfield, MN 55057.

Relaxation oscillators are nonlinear electronic circuits that 
produce a repetitive non-sinusoidal waveform when 
sufficient voltage is applied.  In this fashion, they are 
reminiscent of integrate-and-fire neuron models, except that 
they also include components with hysteresis, and thus 
require no threshold rule to determine when an impulse has 
occurred or to return the voltage to its reset value.  Here, I 
discuss the pros and cons of teaching elementary 

neurophysiology using first-order linear integrate-and-fire 
neurons versus relaxation oscillator circuits.  I suggest that 
the shortcomings of both types of models are useful in order 
to foster a critical understanding of the neurophysiology 
underlying the firing dynamics of biological neurons.  
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The linear integrate-and-fire neuron is a simple spiking 
model that produces many of the features characteristic of 
real neurons (Gerstner & Kistler, 2002).  For this reason, 
they make very practical and useful models in teaching the 
basic principles of neurophysiology to undergraduate 
students.  However, as they are described simply by a first-
order differential equation and have no intrinsic fast 
dynamics (i.e., action potential) or after-hyperpolarization 
voltage, they really only describe the slow, subthreshold 
membrane properties prior to an action potential.  On the 
other hand, relaxation oscillators are electrical circuits with 
far greater complexity and can be used as spiking neuron 
models that include both the supra-threshold fast 
depolarization of the action potential and the voltage reset 
of the after-hyperpolarization.  In this paper, I will discuss the 
potential strengths and weaknesses of both models as 
teaching tools for undergraduate neuroscience students.  I 
will show that there are teachable moments associated with 
the shortcomings of each model and will suggest that both 
are therefore useful comparisons when teaching the 
physiological basis of neuronal firing dynamics. 
 
The Linear Integrate-and-Fire (IF) Neuron 
The simplest mathematical model of the nerve cell is the 
linear IF neuron.  This model is derived from an equation 
describing the change in voltage as a function of time 
observed when current is applied to a simple electrical circuit 
consisting of a resistor and a capacitor in parallel.  The 
resistor represents the membrane resistance, which for a 
cell with a diameter of approximately 20 µm maybe be in the 
ballpark of 256 MΩ.  This resistance is due to a leak 
conductance of 0.3 mS*cm2.  The capacitance may be 80 
pF, or 1 µF/ cm2.  In parallel, these two components thus 
represent the ion channels and phospholipid bilayer of the 
membrane, respectively (Figure 1).  A battery is often added 
in series with the resistor in order to give the simple model a 
biologically-plausible resting membrane potential when no 
current is applied.  Unless the voltage of this battery exceeds 
the voltage threshold for an impulse, this cell will not spike 
without injected current.  Thus a current source (I_inj) is also 
included in the schematic to represent the injection of 
current by an intracellular recording electrode.  Vm indicates 

 
Figure 1.  A schematic diagram representing the electrical circuit 
from which the IF neuron equation is derived. 
 
the point at which the membrane potential is recorded with 
respect to ground (GND). 
     Depolarizing current imposed upon this circuit (by the 
current source) will decrease the magnitude of the potential 
difference between Vm and GND.  When the voltage 
(measured at point Vm) reaches threshold (typically a 
 

 

 
Figure 2.  A graph showing the change in voltage over time (blue) 
of the circuit depicted in Figure 1 when current (0.1 nA, orange) is 
applied.  X-axis is in ms, y-axis is in mV for membrane potential, 
10-9 A for injected current.  (See Appendix A for Python code.) 
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voltage some 15 mV depolarized from rest), this indicates 
that an action potential has occurred.  The voltage of the 
circuit is then reset to an arbitrary voltage, typically near the 
Nernst equilibrium potential for potassium.  Note, however, 
that nothing in the circuit shown in Figure 1 provides for the 
threshold device or accounts for hyperpolarized reset 
voltage that occurs after an impulse.  Rather, the circuit 
really only describes the rate at which the cell, under the 
influence of imposed current, depolarizes toward threshold, 
or the rate at which the cell hyperpolarizes back to rest from 
a subthreshold voltage owing to a change in the amplitude 
of the imposed current. 
      Students will immediately notice the effects of the 
membrane time constant on the charging curve in Figure 2.  
The equation that governs this system (Stein, 1967) is 
 
Equation 1.  𝜏𝜏 𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
= 𝐼𝐼 − 𝑔𝑔(𝑉𝑉 − 𝐸𝐸)  

 
where V is membrane potential, τ is the membrane time 
constant (τ = R*C), I is the imposed current, g is the 
membrane conductance (1/R) and E is the Nernst 
equilibrium potential for the leak conductance.  The graph 
above was generated using the following numerical solution 
to Equation 1:  
 
Equation 2. 𝑉𝑉∞ = (𝐼𝐼 + 𝑔𝑔𝐸𝐸)/𝑔𝑔  
 
Equation 3. 𝑉𝑉𝑑𝑑+𝜕𝜕𝑑𝑑 = 𝑉𝑉∞ + (𝑉𝑉𝑑𝑑 − 𝑉𝑉∞)𝑒𝑒

−𝜕𝜕𝜕𝜕
𝜏𝜏  

 
where Vt is the membrane potential at time t.  To transform 
this model membrane into a spiking neuron model, it is 
necessary to add a rule that states that if the voltage 
exceeds threshold, then Vt+dt = Vreset. 
     At this point, the student becomes somewhat indignant, 
not only because a rule beyond the laws of physics has been 
miraculously imposed upon an otherwise well-behaved 
physical system, but also because the action potentials 
produced by the IF neuron lacks the pronounced overshoot 
and reversal of membrane polarization that characterizes 

 
Figure 3.  A graph showing a linear IF neuron based on the 
electrical equivalence circuit shown in Figure 1 and similar to the 
one shown in Figure 2, but with a “rule” imposed on the system that 
whenever membrane potential exceeds threshold (-35 mV in this 
case), the membrane potential suddenly (and inexplicably, based 
on the circuit in Figure1 and Equation 1-3) becomes -77 mV 
(approximately the Nernst equilibrium potential for potassium). 

the action potential.  The linear IF neuron describes only 
slow, subthreshold membrane dynamics, while the fast, 
supra-threshold behavior of the neuron is blatantly 
disregarded.  (Most often graphs of the activity of IF neurons 
are aesthetically augmented by drawing vertical lines that 
connect threshold to the equilibrium potential for sodium 
whenever an action potential has occurred.) 
    This system is far simpler and easier to visualize and 
understand than the much more physiologically-realistic 
Hodgkin-Huxley equations, from which even determining the 
time constant of the membrane takes a bit of algebra.   
 
A Nonlinear Integrate-and-Fire (IF) Neuron 
The linear IF neuron’s greatest short-coming is its linearity, 
which comes from the representation of the leak 
conductance as a constant resistance.  Membrane 
resistance, of course, is not constant but changes as a 
function of voltage.  The IF neuron can be made somewhat 
more realistic by adding a voltage-dependent inward current 
(for detailed explanations, see Friesen & Friesen, 2010): 
 
Equation 4. 𝜏𝜏 𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
= 𝐼𝐼 − 𝑔𝑔𝐿𝐿(𝑉𝑉 − 𝐸𝐸𝐿𝐿) − 𝑔𝑔𝑁𝑁𝑁𝑁(𝑉𝑉 − 𝐸𝐸𝑁𝑁𝑁𝑁)  

 
where gL is the leak conductance (1/R) and gNa is a voltage-
dependent conductance that is described by the equation: 
 
Equation 5. 𝑔𝑔𝑁𝑁𝑁𝑁 = 𝑔𝑔�𝑁𝑁𝑁𝑁

1+𝑒𝑒
ℎ−𝑉𝑉
𝑠𝑠

  

 
This alters the circuit diagram shown in Figure 1, adding a 
second battery (with reverse polarity) and a variable resistor, 
in parallel with the capacitor (Figure 4).  However, it must be 
noted that the variable resistor is only conceptual in nature, 
in the sense that it will not respond automatically to changes 
in voltage; if this circuit were actually constructed, this 
potentiometer dial would have to be manipulated manually. 
     There are some satisfying improvements to this model.  
First of all, the student no longer has to fret as to the absence 
of the hallmark spike component of the action potential 
(Figure 5).  Whereas the linear IF neuron is characterized by 
negative feedback (which will be demonstrated below), the 
nonlinear IF neuron has positive feedback in the form of an  

  
Figure 4.  The electrical equivalence circuit for a nonlinear IF 
neuron with dynamics described by Equation 4-5.  Note that 
resistors are now marked with associated conductances (g), and 
that the two batteries have opposite polarities, representing ENa 
(45 mV) and EL (-60 mV), respectively.  (See Appendix B for 
photographs.) 
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Figure 5.  The firing properties of the nonlinear IF neuron described 
in Figure 4 and by Equations 4-5.  This model’s positive feedback 
makes it a truly spiking neuron model, although it still requires a 
voltage reset rule so that the action potential terminates in an after-
hyperpolarization.  The rule resets the voltage (again inexplicably 
according to the circuit in Figure 4 and Equations 4-5) to -77 mV 
when the membrane potential exceeds a threshold of +30 mV.  
[From Equation 5, h = 30 mV, s = 1 mV).] 
 
inward current that is activated by depolarization.  By 
changing the rule to reset the voltage when it reaches a 
positive value (I used 20 mV), a satisfactory approximation 
of the action potential is elicited. 
     The superiority of the nonlinear IF model is especially 
evident by comparing its IV plot (Figure 7) to that of the linear 
IF neuron (Figure 6).  The linear IF model simply illustrates 
Ohm’s law: voltage is equal to current times resistance.  
Since the resistance is constant (voltage-independent), the 
IV plot is simply a straight line with a positive slope.   
     The x-intercept is the resting membrane potential for this 
cell.  On its own, a resistor would have an x-intercept at the 
origin, but the battery in series with the resistor in Figure 1 
shifts the x-intercept to the voltage of that source (the 
equilibrium potential of the leak current in Equation 1.  The 
positive slope means that this model is homeostatic.  If the 
membrane is depolarized above the resting membrane 
potential of -60 mV, a positive (outward) current develops in 
proportion to the degree of depolarization, driving the 
membrane potential in the negative direction back down to 
rest.  Conversely, if the membrane potential becomes more 
hyperpolarized than -60 mV, a negative (inward) current 
develops that depolarizes the membrane back to rest.  It is 
easy to see from Equation 1 that there is no change in the 
membrane potential (i.e., the derivative is zero) when 
membrane potential is equal to the equilibrium potential of 
the leak current. 
     The IV plot of the nonlinear IF neuron is much more 
interesting (Figure 7).  It has two stable equilibria (x-
intercepts with positive slopes), representing the two 
equilibrium potentials in Equation 4 (leak and sodium).  It 
also has an unstable equilibrium characterized by an x-
intercept with a negative slope.  This state of the system is 
unstable because it will show positive feedback in response 
to perturbations in either direction.  If it tips toward the 
negative direction, a positive current will develop that drives 
it more negative.  If it trends in the positive direction, a 
negative current will develop that drives it ever more 

 
Figure 6.  The IV plot of the linear integrate-and-fire neuron 
described by Equation 1.  Note that only one equilibrium exists (the 
x-intercept at the membrane’s resting leak potential), and that this 
equilibrium is stable (positive slope). 
 
positive.  This point is a graphical representation of the 
action potential threshold.  Note that the inward sodium 
current so dwarfs the resting membrane potential that the 
current looks zero toward the left.  The inset is a blow up of 
the two negative equilibria. 
     Both IF neurons represent systems inspired by electrical 
circuits with known physical properties.  However, the 
student who attempts to build these circuits will be 
disappointed by the results.  The electrical equivalence 
circuits will show no threshold, no action potential, and no 
intrinsic capacity for reset, except by manual manipulation 
of the variable resistor in the case of the circuit shown in 
Figure 4.  Thus, the students are asked to use the properties 
of an analogous physical system, which itself is insufficient 
to account for the most salient characteristics of the 
biological system.  Einstein’s Constraint (whether truly 
attributable to Einstein or not) argues that the goal of theory 
is to reduce a complex system to the fewest simple  
 

 
Figure 7.  The IV plot of the nonlinear IF neuron described by 
Equations 4-5.  The inset is included to show that a stable 
equilibrium still exists at the resting membrane potential (-60 mV).  
Note that there is also an unstable equilibrium at -37 mV and a 
pronounced region of negative slope resistance between -37 and -
25 mV.  There is also a second stable equilibrium at +45 mV 
(equilibrium potential for sodium).  It is worth reminding the 
students that in a real cell, this stable equilibrium is ephemeral due 
to fast sodium channel inactivation and the opening of delayed-
rectifier potassium channels. 
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components possible, without compromising the fidelity of 
the model to the natural system’s behavior.  IF neurons have 
merit in teaching temporal integration, stable and nonstable 
equilibria, IV curves and other challenging 
neurophysiological concepts, concepts which are 
challenging for undergraduates to extract from the shear 
complexity of the full Hodgkin-Huxley model.  Nevertheless, 
they require the undergraduate to accept the imposition of 
paraphysical phenomena upon an otherwise well-behaved 
physical system. 
     There are, of course, many other nonlinear IF models 
with interesting properties.  Several are derived from 
quadratic functions, and even have a second differential 
equation that describes activity-dependent changes in firing, 
such as spike frequency adaptation and bursting (Izhikevich 
2003).  However, such quadratic models are often too 
arbitrary for the students, concealing such fundamentals as 
membrane resistance and capacitance, so these are not 
necessarily the best starting point for the undergraduate. 
 
Relaxation Oscillators as Model Neurons 
The relaxation oscillator represents perhaps the exact 
opposite end of the model neuron spectrum.  Work on 
relaxation oscillators as models of nerve activity dates back 
more than 80 years (Hill, 1933).  Perhaps the most common 
example of a relaxation oscillator as a model neuron is the 
FitzHugh-Nagumo oscillator (FitzHugh 1961; Nagumo et al., 
1962).  This class of oscillator circuit produces a non-
sinusoidal oscillation of electrical potential when constant 
current is applied of sufficient amplitude.  Depending on how 
it is designed, the circuit could produce a saw-toothed wave, 
but in the circuit diagram shown here I have used an LED in 
order give the circuit a voltage spike that resembles an 
action potential (Figure 8).  The behavior of this system is 
compellingly neuron-like.  The electrolytic capacitor and 
resistor provide the RC elements that give the circuit its 
subthreshold time constant.   
     The resistor value is 470 Ohms, which is not at all 
comparable to the membrane resistance of a nerve cell, but 
was selected as a current limiting resistor when considering 
the powering of the LED.  Likewise, an electrolytic capacitor, 
some 5 orders of magnitude greater than would be 
reasonable of the cell described above, was selected in 
order to give the “cell” a desired firing frequency range.  The 
time constant for the “cell” is approximately 10-fold higher 
than would be reasonable for a nerve cell, and this is 

 
Figure 8.  A simple relaxation oscillator as an alternative electrical 
model of a spiking nerve cell.  Note that the 2n2222 transistor is 
wired in a reverse-biased configuration, and that the base pin is 
intentionally floating (unconnected).  V_out represents the point at 
which voltage is measured and fed to the data acquisition system 
or oscilloscope. 

because on close inspection, the spike is about an order of 
magnitude too broad in duration.  The chosen parameters 
allow for compression of the time axis such that the spike 
form and firing rate appear to be biologically realistic. 
     The best aspect of the relaxation oscillator is that it has 
an intrinsic threshold, upon which a spike is generated, and 
after which an after-hyperpolarization develops.  This is 
achieved by using a transistor as a switch.  The 2N2222 is 
a general purpose NPN transistor, but in the reverse-biased 
mode shown in Figure 8, it has a low breakdown voltage and 
a negative slope resistance.  It also has varactor-like 
properties, a varactor (or variable capacitance diode) being 
an electronic component with a voltage-dependent 
capacitance.  Other general purpose transistors (such as the 
2N3904 and the 2N4401) were not found to be adequate 
substitutes in this circuit.  The “action potential” is viewed by 
recording the voltage drop across the visible-light LED, 
which is in series with the reverse-biased transistor. 
     The current delivered from the series 9V batteries to the 
transistor is controlled by the potentiometer in Figure 8, but 
both the batteries and the potentiometer could be eliminated 
if a quality variable power supply is available.  At 
subthreshold voltages, a small depolarization is observed 
across the LED.  However, when voltage reaches threshold, 
the system enters into an oscillatory state during which 
impulses are repeatedly fired, at a frequency proportionate 
to the intensity of the stimulation. 
     The strengths of the relaxation oscillator model are 
obvious.  This is a buildable electrical circuit which produces 
many of the most salient behaviors of real neurons.  The 
“cell” has a time constant and fires impulses at frequencies 
that are related to the amplitude of current injected (Figure 
9, bottom trace), just as is the case for the IF neurons. 
However, unlike the IF models, the relaxation oscillator 
model also exhibits both a threshold and a visible “action 
potential” when that threshold is reached.  Following the 
dramatic action potential, there is a voltage reset “after- 
hyperpolarization”.  These latter three properties are faked 
using a rule in the IF neuron, such that the electrical 

 

 
Figure 9.  Spiking behavior of the relaxation oscillator.  Upper trace 
shows the resting state, depolarization as current is applied by 
varying the potentiometer, the transition to a regenerative spiking 
state, and cessation of spiking upon lowering of the applied current 
back toward the minimum.  Bottom trace shows near threshold 
spiking behavior as current is slowly lowered, with faster firing 
toward the left of the plot and a cessation of spiking just below 
threshold to the right.  Note the subthreshold charging curve with 
measurable time constant. 
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equivalence circuit for the relaxation oscillator actually works 
(generates the spiking behavior it is intended to describe), 
while the electrical equivalence circuits for the IF neurons 
will only show charging curves related to the time constant 
attributable to the RC components of the circuit. 
     However, the relaxation oscillator model is not without its 
shortcomings.  None of the parameters in the system 
resemble biologically plausible values.  The LED imposes 
one physical limit, not turning on until approximately 1.5V is 
applied to it, while the breakdown voltage for the emitter-
base junction in the transistor is huge on the neuronal scale 
(6 volts).  The kinetics of spike termination in the resonance 
oscillator model are too slow, so that spikes are quite broad, 
and variable in duration, ranging from 15 ms at the lowest 
achievable firing rates to more than 25 ms at higher 
frequencies.  In fact, at the highest firing rate (only about 10-
15 Hz), the depolarizing phase of the action potential 
actually has a duty cycle of 0.38; an actual nerve cell with a 
2-ms duration action potential occurring at a rate of 120 Hz 
would have a duty cycle of only 0.25.  Furthermore, while a 
depolarization to about 1.94 volts (in the circuit shown in 
Figure 9) is necessary to trigger spiking behavior, the peak 
depolarization during the spike is only 1.56 V above this.  If 
in a normal cell, the voltage threshold is approximately 25% 
depolarized from rest, the voltage change during the 
depolarizing phase of the action potential should be 
approximately 7 times that difference, not less than twice.  
This gives the relaxation oscillator model the appearance of 
a recording from a cell with an electrically inexcitable soma 
and an action potential that occurs at an electrotonically 
substantial distance from that soma.  For a leech 
neurobiologist like myself, this appears normal, but for 
students learning neurophysiology from textbooks, it may 
appear strange.  But they may forgive the model for this as 
the after-hyperpolarization gives the model’s action potential 
a relatively normal appearance (if we ignore the y-axis). 
     The biggest shortcoming of the relaxation oscillator 
model, however, is that apart from having resistive and 
capacitive elements that endow it with a membrane 
potential, and having a threshold voltage that determines 
whether the model is in a static or regenerative state, there 
is nothing about this model that in any way represents 
biology.  There are several factors contributing to the 
oscillations in this circuit, including voltage-dependent 
changes in capacitance which have no parallel in biological 
membranes.  The termination of the action potential is due 
to an inactivation of sorts (the transistor is acting as a switch 
that controls the flow of current to the LED), but the after-
hyperpolarization is attributed to a discharging of 
capacitance, not the interplay between two batteries and the 
relative resistances between them and the voltage-
measuring point.  While the depolarization and 
repolarization of the action potential depends on a complex 
dance between sodium and potassium ions, the relaxation 
oscillator system is a single charge system that oscillates.  
For an analogy, imagine a cell with voltage-gated sodium 
channels that permitted an influx of sodium so great that 
ENa hyperpolarized below the resting membrane potential, 
and that this was the reason for spike termination.  The 
relaxation oscillator model does many of the right things, but 

mostly for the wrong reasons. 
 
Conclusions 
I have expressed in the past my strong desire to introduce 
my students to basic electronics and instrumentation in the 
teaching of neuroscience (Crisp et al., 2016; Crisp, 2018).  I 
especially rely on these types of simulations and circuit-
models in my upper division neurobiology seminar and in my 
computational neuroscience course.  But they are also very 
useful in working one-on-one with research students on 
computational neuroscience projects.  However, they are 
generally for the more advanced neuroscience student, or 
for any students who have a good deal of comfort with 
interdisciplinary material (physics, math, computer science 
and biology). 
     Part of the appeal of the relaxation oscillator as a spiking 
neuron model is that it gives the students a hands-on 
introduction to some basic electrical components (like 
resistors and capacitors) that are critical for the 
understanding of how neural membranes work.  To build a 
simple circuit and see it behave like a spiking neuron makes 
for a fun and easy demonstration that sets the stage for the 
more abstract mathematical models of spiking neurons such 
as the linear and nonlinear IF neurons.  The student who 
truly understands the similarities and shortcomings of each 
of these models will understand quite a bit about 
neurophysiology and modeling so the flaws of each models 
herein identified can serve as teachable moments. 
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APPENDIX A 
# Python 2.7 code used to produce data in Figures 2,3,5,6 & 7 
from math import * 
 
# change include_fast_sodium variable = (True or False) 
# to switch between linear and nonlinear IF units 
 
include_fast_sodium = False 
 
# simulation variables: 
R = 256e6 # Ohms, measured with negative current at rest 
I = 0.1e-9 # A 
gl = 1/R # mhos (siemens) 
El = -0.06 # V 
Ena = 0.045 # V 
gna_max = 1.52e-6 # mhos (siemens) 
Cm = 80e-12 # F 
tau = Cm*R # S 
v = El # V 
dt = 1e-2 # S 
if include_fast_sodium: vth = 0.03 # V 
else: vth = -0.035 # V 
vreset = -0.077 # V 
h = -0.04 
s = 0.001 
 
# compute voltage as a function of time         
print "ms \t mV \t nA" 
tsteps = 20000 # time-steps to simulate 
for t in range(int(tsteps*dt)): 
    if t > 50 and t < 150: i = I 
    else: i = 0 
    if include_fast_sodium: 
        gna = gna_max / (1 + exp((h - v)/s)) 
    else: 
        gna = 0 
    G = gl + gna 
    vinf = (i + gl*El + gna*Ena)/G  
    v = vinf + (v - vinf)*exp(-dt/tau) 
    if v > vth: v = vreset 
    print str(t) + "\t" + str(v*1000) \ 
    + "\t" + str(i*10e10) 
print "----------------------" 
 
# compute current as a function of voltage 
def float_range(start, stop, step): 
    i = start 
    while i < stop: 
        yield i 
        i += step 
print "membrane potential (mV)" + "\t" \ 
      + "membrane current (nA)" 
for v in float_range(-0.1,0.05,.01): 
    if include_fast_sodium: 
        gna = gna_max / (1 + exp((h - v)/s)) 
    else: gna = 0 
    i = gl*(v - El) + gna*(v - Ena) 
    print str(v*1000) + "\t" + str(i*10e9) 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX B 

 
 
Figure A1.  Photograph of a prototyping board with the circuit 
shown in Figure 8.  Note that pin 2 of the 2n2222 is open (not 
connected to anything); it is actually bent upward toward the 
ceiling.  The two yellow wires at the bottom of the image are 
connected to the potentiometer.  The red and black leads at the top 
of the image are connected to the oscilloscope.  The red and black 
wires at the left of the image are from the batteries. 
 

 
 
Figure A2.  Photograph of the experimental apparatus used to 
visualize the spiking activity of the resonance oscillator depicted in 
Figures 8 and A1.  Note that 2 9V batteries are connected in series 
to provide power.  The potentiometer appears near the bottom left 
corner of the image.  The exact value of the potentiometer is not 
critical, but something in the range of 5-20 kOhms should allow for 
a range of spiking activity from the resonance oscillator as the 
potentiometer is adjusted.  Note that the LED will blink every time 
a spike occurs, but the oscilloscope is used to visualize the time-
dependent changes in voltage (across the LED). 
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