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Research in neuroscience, whether at the level of genes, 
proteins, neurons or behavior, almost always involves the 
interaction of multiple variables, and yet many areas of 
neuroscience employ univariate statistical analyses almost 
exclusively.  Since multiple variables often work together to 
produce a neuronal or behavioral effect, the use of 
univariate statistical procedures, analyzing one variable at 
a time, limits the ability of studies to reveal how interactions 
between different variables may determine a particular 
outcome.  Multivariate statistical and data mining methods 
afford the opportunity to analyze many variables together, 

in order to understand how they function as a system, and 
how this system may change as a result of a disease or a 
drug.  The aim of this review is to provide a succinct guide 
to methods such as linear discriminant analysis, support 
vector machines, principal component and factor analysis, 
cluster analysis, multiple linear regression, and random 
forest regression and classification, which have been used 
in circumscribed areas of neuroscience research, but 
which could be used more widely. 
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Experimental phenomena in neuroscience usually involve 
the complex interaction of multiple variables.  Nonetheless, 
historically, statistical analysis has been dominated by the 
comparison of one variable at a time between treatment 
groups.  In many areas of neuroscience, univariate 
statistical analyses have been used almost exclusively.  
This approach may inflate the type 1 error rate due to large 
numbers of univariate statistical analyses and can neglect 
the fact that changes may occur in the interactions 
between variables that cannot be detected in individual 
variables (Manly, 2005; Stevens, 2009; Liu et al., 2010).  
Consequently, in areas of neuroscience involving 
genomics, proteomics and medical diagnostics, 
multivariate statistical analyses and data mining 
approaches have been employed in order to understand 
complex interactions within systems of variables (e.g., 
Pang et al., 2006; Krafczyk et al., 2006; Dziuda, 2010; 
Ryan et al., 2011; Brandt et al., 2012; Smith, 2012; Zheng 
et al., 2012; Smith et al., 2013b; Liu et al., 2017).  Despite 
these applications in neuroscience, most undergraduates 
receive little exposure to multivariate statistical and data 
mining methods, unless they do so in a bioinformatics 
course in a department such as biochemistry. 
     First, it is necessary to appreciate the broad scope of 
multivariate statistical analyses (MVAs) and related data 
mining procedures.  Many MVAs can be broadly divided 
into those that are concerned with associating or predicting 
qualitative or categorical variables (e.g., linear discriminant 
analysis, support vector machines, random forest 
classification, correspondence analysis), and those that are 
concerned with associating or predicting quantitative 
variables (e.g., principal component analysis, factor 
analysis, cluster analysis, multiple linear regression, 
random forest regression, canonical correlation analysis, 
multidimensional scaling, ordination, structural equation 

modelling, neural networks) (Krzanowski, 2005; Stevens, 
2009; see Manly, 2005 for an easy-to-understand 
introductory review).  Multiple linear regression (MLR) and 
other regression methods such as random forest 
regression, are sometimes not considered to be MVAs, 
because there is only one dependent variable to be 
predicted while there are multiple independent variables 
(e.g., Krzanowski, 2005; Manly, 2005; West and Aiken, 
2005).  However, such methods are included in this review 
because of their importance and because what they have 
in common is that they involve multiple variables.  For this 
reason, some textbooks on MVAs include MLR (e.g., 
Stevens, 2009).  Although linear discriminant analysis 
(LDA), in its simplest form, has only one categorical 
dependent variable and multiple independent variables, the 
concept of discriminant analyses can be expanded to 
include more than one dependent variable (e.g., partial 
least squares discriminant analysis (PLS-DA) or orthogonal 
projection to latent structures discriminant analysis (OPLS-
DA); He et al., 2017).  Similarly, regression methods such 
as multiple linear regression (MLR) may only involve one 
dependent variable and multiple independent variables; 
however, regression methods can be extended to include 
more than one dependent variable (e.g., canonical 
correlation analysis, multivariate multiple regression; 
Manly, 2005; Hartung and Knapp, 2005; Stevens, 2009). 
     Other MVAs are not focused on specific dependent 
variables at all but more the degree of association or co-
variation amongst multiple variables.  For example, cluster 
analyses (CAs) can be used to investigate the degree to 
which the different neurochemicals related to aging co-vary 
with one another, and the results are often shown using 
dendrograms.  CAs have been used extensively in 
genomics and proteomics.  Still other MVAs are more 
concerned with investigating the way that groups of 
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variables with different weightings, may explain most of the 
variation in a matrix of variables.  Examples of this are 
Principal Component Analysis (PCA) and Factor Analysis 
(FA) (see Table 1).  A distinction is often made between 
supervised and unsupervised MVA and data mining 
methods.  Supervised methods are those that are applied 
to a dependent variable(s), with the objective of 
determining its (their) relationship with the independent 
variables, whereas unsupervised methods do not require a 
dependent variable but search for patterns in the 
independent variables (Questier et al., 2005; Anzanello et 
al., 2014).  Supervised methods include linear discriminant 
analysis, support vector machines, random forest 
classification and regression, multiple linear regression, 
canonical correlation analysis, structural equation 
modelling and neural networks.  Unsupervised methods 
include principal component analysis, factor analysis, 
correspondence analysis and cluster analysis (Questier et 
al., 2005; Anzanello et al., 2014) (see Table 1). 
     Data mining procedures are related to MVA but some 
have arisen out of computer science rather than traditional 
statistics.  Data mining methods include such procedures 
as random forest regression, random forest classification 
and support vector machines; however, increasingly, the 
division between MVA and data mining methods is unclear. 
 

Supervised 

  Qualitative or Categorical Variables 

  Linear discriminant analysis 
  Logistic Regression 
  Partial Least Squares Discriminant Analysis 
  Structural Equation Modelling 
  Support Vector Machines (DM) 
  Random Forest Classification (DM) 

 

  Quantitative Variables 

  Multiple Linear Regression 
  Canonical Correlation Analysis 
  Multivariate Multiple Regression 
  Structural Equation Modelling 
  Random Forest Regression (DM) 
  Neural Networks (DM) 

 

Unsupervised 

  Qualitative or Categorical Variables 

  Correspondence Analysis 

 

  Quantitative Variables 

  Principal Component Analysis 
  Factor Analysis 
  Cluster Analysis 
  Multidimensional Scaling 
  Ordination 

 

Table 1.  Different types of MVA and Dating Mining 
Methods categorized according to whether they involve a 
categorical or continuous (quantitative) dependent variable 
and whether they specify a dependent variable (i.e., 
Supervised) or not (i.e., Unsupervised).  ‘DM’ denotes 
those methods that emerged out of dating mining research 
in computer science. 

     The aim of this review is to provide a succinct guide to, 
and an overview of, some MVAs and data mining methods 
that have been and can be applied to neuroscience data, 
both at the basic experimental level as well as the clinical 
levels.  In the author’s experience, undergraduate and 
postgraduate neuroscience students often find multivariate 
statistical analyses surprisingly interesting, because they 
can reveal differences that were not at all obvious before 
the analysis.  They also often find the procedures less 
difficult than they anticipate when they realize that many of 
them can be performed using the same data format as for 
univariate statistical analyses, depending on the statistical 
program being used.  Because the MVA and data mining 
fields are vast, this review will focus on linear discriminant 
analysis, support vector machines, principal component 
and factor analyses, cluster analysis, MLR and random 
forest regression and classification, and their potential 
applications to neuroscience.  For other methods listed in 
Table 1 the reader is referred to specialized textbooks and 
papers (e.g., Marcoulides and Hershberger, 1997; Gurney, 
1997; Latin et al., 2003; Pang et al., 2006; Tabachnick and 
Fidell, 2007; Blunch, 2008; Marsland, 2009; Kaplan, 2009; 
Hastie et al., 2009). 
 

CLASSIFICATION METHODS 
LINEAR DISCRIMINANT ANALYSIS (LDA) 
Linear discriminant analysis (LDA) is a statistical method 
often used following a multivariate analysis of variance 
(MANOVA), in which the membership of two or more 
groups can be predicted from a linear combination of 
independent variables (Manly, 2005; Stevens 2009).  
MANOVAs are an extension of univariate analysis of 
variance (ANOVA) to the case in which there is more than 
one dependent variable.  There are various test statistics, 
including Wilks’s λ, Roy’s largest root, Pillai’s trace statistic 
(also known as the Pillai-Bartlett trace statistic) and Lawes-
Hotelling trace statistic (Manly, 2005).  All four MANOVA 
statistics appear to be similar in power for small to 
moderate sample sizes (Field, 2011).  According to Seber 
(1984), simulation studies indicate that Pillai’s trace 
statistic may be more robust against violations of the 
assumptions of multivariate normality and homogeneity of 
the covariance matrices (see below) than the other 
statistics. Field (2011) also draws this conclusion, provided 
that the sample sizes for the different variables are equal. 
     A linear discriminant function (LDF) has the general 
form: 
 

Z = a1X1 + a2X2 +...apXp       
 
Where Z refers to the group, X, X2,….Xp  are independent 
variables, and a1, a2,...ap are coefficients (Manly, 2005). 

 
     LDA is similar in aim, but different in approach to logistic 
regression, in which the dependent variable is binary (0/1) 
and consists of positive (a ‘success’) and negative 
responses (a ‘failure’) only (Manly, 2005).  However, LDA 
assumes that the independent, explanatory variables, are 
normally distributed, whereas logistic regression does not 
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(Field, 2011; Kitbumrungrat, 2012; Liong and Foo, 2013; 
Pohar et al., 2014). 
     The statistical significance of the LDF can be assessed 
using statistics such as Wilk’s λ.  The success of the LDF 
in separating the groups can be evaluated using cross-
validation (e.g., a leave-one-out or ‘LOO’ procedure), in 
which the linear equation is used to classify the data, one 
observation at a time, without knowledge of the actual 
group membership.  It is possible to use a stepwise LDA.  
However, some authors (Manly, 2005; Field, 2011) suggest 
that stepwise methods can result in suppressor effects and 
an increase in type II error.  LDA is readily available in 
programs such as SPSS, SAS and Minitab. 
 
MULTIVARIATE NORMALITY 
MANOVA and LDA make assumptions about the 
distribution of the data.  The first is that, for formal tests of 
statistical significance to be valid, the data within groups 
should have a multivariate normal distribution (Manly, 
2005).  Unlike univariate statistical analyses such as 
ANOVA, MANOVA and LDA are more sensitive to the 
violation of the assumption of multivariate normality, which 
can be a problem especially for very small sample sizes, 
i.e., < 10 (Marcoulides and Hershberger, 1997; Manly, 
2005; Tabachnick and Fidell, 2007; Stevens, 2009).  
Fortunately, there is a multivariate formulation of the 
central limit theorem and sample sizes of 10-20 per group 
appear to be sufficient to afford protection against the 
consequences of violating multivariate normality (Bock, 
1975; Stevens 2009).  Furthermore, according to several 
studies, deviations from multivariate normality appear to 
have only a small effect on the type I error rate (see 
Stevens 2009, for a review, p. 222).  It is in fact difficult to 
test for multivariate normality, because most programs 
such as SPSS and Minitab do not offer such an 
assumption test (Stevens, 2009).  Because univariate 
normality, i.e., the normality of the individual variables, is 
necessary but not sufficient for multivariate normality, it is 
possible for each individual variable to be normally 
distributed without the multivariate distribution being 
normally distributed.  Stevens (2009) points out that 
because a multivariate normal distribution entails that all 
subsets of variables have normal distributions, one way to 
assess multivariate normality is to determine whether all 
pairs of variables are bivariate normal.  Box’s test for the 
homogeneity of the covariance matrices is sensitive to 
violation of multivariate normality; therefore, in order to 
obtain results from that test that are valid, whether the 
assumption of multivariate normality is fulfilled, is of some 
concern (Stevens, 2009).  It should be noted that LDA may 
still discriminate between groups even if the assumption of 
multivariate normality does not hold.  On the other hand, 
multivariate normality does not necessarily mean that LDA 
will effectively discriminate between the groups. 
 
HOMOGENEITY OF THE COVARIANCE MATRICES 
A second assumption is that the population covariance 
matrices are equal for all groups, usually tested using 
Box’s M test (Marcoulides and Hershberger, 1997; Manly, 
2005).  If this assumption is violated, a quadratic 

discriminant analysis (QDA) can be used instead.  In a 
review of several Monte Carlo studies, Stevens (2009) 
concluded that, provided that the sample sizes are equal, 
even moderate heterogeneity of the covariances does not 
substantially affect type I error.  Unequal sample sizes, on 
the other hand, are potentially very problematic if the 
covariances are unequal. 
     While Box’s M test is often used, its null hypothesis may 
be rejected only because the multivariate normality 
assumption is violated (see above) (Stevens, 2009).  
Therefore, it is important to determine whether this is the 
reason for a significant Box’s M test.  Box’s M test is also 
very sensitive to departure from homogeneity of the 
covariances (Field, 2011).  Both Stevens (2009) and Field 
(2011) suggest that even if the Box’s M test is significant, 
the type I error rate will be only slightly affected provided 
that there are equal sample sizes, although the power may 
be somewhat reduced. 
 
NUMBER OF VARIABLES 
One of the common problems in many multivariate 
statistical analyses is the sample size for each variable, n, 
relative to the number of variables, p. While unequal 
sample sizes can be problematic, as described above, 
when p is greater than n, statistical analyses such as 
MANOVA and LDA can become invalid.  Stevens (2009) 
and Field (2011) suggest that, unless the n is large, p 
should be ≤ 10.  Monte Carlo studies have shown that if 
the sample size is not large compared to the number of 
variables, the standardized discriminant function 
coefficients and correlations obtained in LDA are unstable 
(Stevens, 2009).  By ‘large’, Stevens (2009) suggests an 
ideal ratio of n (total sample size) to p (number of 
variables) of 20:1.  He further cautions that a small n:p ratio 
(i.e., ≤ 5) can be problematic for stepwise LDA in particular, 
because the significance tests are used to determine which 
variables are included in the solution (Stevens, 2009). 
 
EXAMPLE OF LDA IN NEUROSCIENCE 
Although LDA has not been used extensively in basic 
neuroscience to predict categorical membership, an 
example of its application is the prediction of age on the 
basis of the concentration of specific neurochemicals in 
different parts of the brain (Liu et al., 2010; Liu et al., 
2017).  The L-arginine metabolic pathway is a biochemical 
pathway that is critical for neuronal function (see Figure 1) 
and involves the neurochemicals: agmatine, putrescine, 
spermidine, spermine, L-arginine, L-ornithine, L-citrulline, 

glutamate and –aminobutyric acid (GABA).  Although 
Figure 1 presents specific connections between some of 
these neurochemical variables, the mechanisms through 
which they interact with one another are not completely 
understood and additional pathways, specifically feedback 
pathways, are likely (Liu et al., 2017).  It is, therefore, of 
interest to determine which parts of this complex 
neurochemical pathway are important in predicting 
categorical variables such as dementia. 
     Liu et al. (2010) examined the concentrations of these 
neurochemicals in two areas of the rat hindbrain concerned 
with the control of movement and balance: the brainstem 
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Figure 1.  Schematic diagram of the L-arginine metabolic 

pathways.  NO: nitric oxide; GABA: –aminobutyric acid.  Modified 
from Liu et al. (2017) with permission. 
 
vestibular nucleus complex (VNC) and the cerebellum 
(CE), in young (4-month-old; n = 16) and aged (24-month-
old; n = 15) rats.  Using LDA, a linear equation that could 
predict whether the animals were young or old, was 
obtained, based on putrescine, spermine, spermidine, L-
citrulline, glutamate and GABA concentrations in the VNC.  
Cross-validation showed that this LDF could discriminate 
between young and old animals with 100% accuracy and it 
was statistically significant (P ≤ 0.0005, Wilk’s λ).  The CE 
results were surprising.  An LDF was discovered that could 
predict the animals’ age based on only spermine and 
spermidine.  Cross-validation showed that the LDF had 
93% accuracy and was also statistically significant (P ≤ 
0.0005, Wilk’s λ).  The standardized canonical discriminant 
function coefficients are shown in Table 2.  Both the size 
and the sign of the coefficients have predictive value. 
     This method should be applicable to many situations in 
neuroscience in which multiple variables interact to 
determine a categorical dependent variable, provided that 
the sample sizes are sufficient and the cross-validations 
demonstrate the predictive accuracy of the LDFs.  Given 
that Box’s M test of the equality of the covariance matrices 
assumes multivariate normality, one way to proceed is to 
determine whether all pairs of variables appear to be 
bivariate normal.  If so, Box’s M test can be used as a 
guide to whether the assumption of the equality of the 
covariance matrices is fulfilled.  However, the cross-
validation procedure can be used as the ultimate arbiter of 
the effectiveness of the LDF. 
     Field (2011) provides very clear, step-by-step, 
instructions on how to use SPSS to perform an LDA, 
including detailed information about the menus for the 

analysis options and the interpretation of the results that 
are generated (see pp. 615-622). 
 

Standardised canonical 
discriminant function coefficients 

  

Putrescine 0.734 

Spermidine -2.417 

Spermine 3.458 

L-citrulline -0.949 

Glutamate 2.107 

GABA -1.800 

 
Table 2.  Standardised canonical discriminant function 
coefficients for the linear discriminant function for the VNC, which 
was 100% successful in predicting the age of the animals.  From 
Liu et al. (2010). 

 
SUPPORT VECTOR MACHINES 
Support vector machines (SVMs) are an alternative 
method for classification, which employ ‘support vectors’, 
observations that constitute the spatial boundaries 
between different classes (Marsland, 2009; Hastie et al., 
2009; Williams, 2011).  These support vectors are then 
used to formulate a ‘hyperplane’ that defines the boundary 
between the classes (Hastie et al., 2009; Williams, 2011).  
SVMs can use a variety of kernel functions, for example 
radial, polynomial, hyperbolic tangent, spline, Bessel and 
Laplace functions (see Figure 2), in order to remap the  
 

 

Figure 2.  Example of an SVM classification employing a radial 
basis function to separate iris varieties based on petal width and 
length.  From Wilson, M.D. Support vector machines.  In 
Encyclopedia of Ecology, Elsevier, NY (2008) p. 3436.  
Reproduced with permission. 

 
data and create new variables that discriminate the 
different categories (Hastie et al., 2009; Williams, 2011).  
The data are usually split into training and test data sets 
(e.g., 70:30) and the difference between the model based 
on the support vectors in the training data set, and the test 
data set, is calculated as a measure of the model’s 
success.  As with LDA, classification error matrices can be 
used to evaluate the success of the classification, as well 
as receiver operating characteristic (ROC) curves, that 
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quantify the relationship between the true positive rate of 
classification (‘sensitivity’) and the false positive rate of 
classification (‘1 – the specificity’) (Hastie et al., 2009). 
     One of the major advantages of SVMs is that they do 
not make distributional assumptions like MANOVA and 
LDA, other than that the data are independent and 
identically distributed.  Wilson (2008) suggests that for this 
reason, even small sample sizes can provide accurate 
estimates of prediction error when there is a large number 
of variables. 

 
EXAMPLE OF SVMS IN NEUROSCIENCE 
SVMs have been applied in the context of behavioural 
neuroscience, to predict whether animals have certain 
kinds of neurological dysfunction, based on their behavior.  
For example, rats with bilateral vestibular dysfunction 
(‘bilateral vestibular deafferentation’ or BVD) exhibit an 
unusual set of behavioral symptoms that include locomotor 
hyperactivity in an open field maze, abnormalities in 
behavior in an elevated T maze, changes in rearing 
behavior and reduced accuracy in responding in a spatial T 
maze (Zheng et al., 2012). 
     Attempts have been made to use multivariate statistical 
classification methods to determine whether rats can be 
classified as BVD or sham-operated (control rats), by 
combining the data from multiple behavioral symptoms, 
i.e., 12 different behavioral symptoms measured using an 
automated digital tracking system.  LDA could discriminate 
between the BVD and sham animals with 100% accuracy.  
SVMs were also investigated, using Gaussian radial basis, 
polynomial, linear, hyperbolic tangent, Laplace, Bessel, 
ANOVA radial basis function (RBF) and spline kernels.  
The success of the predictive models was tested using a 
test data set, blind to the actual membership, as described  
 

 
Figure 3.  Scatterplot showing the co-variation of the 9 
neurochemical variables in the vestibular nucleus with each other, 
as a function of age (‘A’ = aged, ‘Y’ = young’).  Reproduced from 
Liu et al. (2010) with permission. 

above, and all of the kernel functions resulted in 100% 
accuracy in classifying the BVD animals, except for the 
Laplace (error rate: 50%), ANOVA RBF (error rate: 17%), 
and spline kernel functions (error rate: 33%) (Smith et al., 
2013b).  One of the objectives in investigating these 
classification methods is the potential application to the 
early diagnosis of neurological disorders (e.g., Brandt et 
al., 2012). 
     Although the use of SVMs may seem daunting, and 
they are often used with the statistical programming 
language, R, which many students find challenging to 
learn, there are simple alternatives to begin using SVMs.  
‘R’ is a freely downloadable software program with many 
specialized packages (Crawley, 2007; Field et al., 2012; 
Davies, 2016).  A particular data mining package, named 
‘Rattle’, can be downloaded from the R websites, and while 
it requires the installation of R, it provides a simple menu 
interface for performing a variety of multivariate and dating 
mining analyses, including: decision trees, random forest 
classification and regression, cluster analyses and SVMs 
(Williams, 2009; Williams, 2011).  Rattle has a very user-
friendly graphics user interface (GUI) and data can be 
imported from Excel as csv files. 

 
QUANTITATIVE METHODS  
PRINCIPAL COMPONENT ANALYSIS AND 
FACTOR ANALYSIS 
Like LDA, Principal Component Analysis (PCA) and Factor 
Analysis (FA) try to explain variation in the data using 
linear combinations of multiple variables.  However, they 
look for underlying latent components or factors, 
representing combinations of variables, without predicting 
either a categorical or a continuous variable (‘unsupervised 
MVA’).  The aim is rather to find a linear combination of 
variables that explains most of the variation in the data, in 
the process reducing the number of separate variables in 
the data (‘reducing dimensionality’) (Kline, 2002; Lattin et 
al., 2003; Jolliffe, 2004).  These components or factors are 
expressed as ‘eigenvalues’, which in PCA and FA are 
represented as linear combinations of the original 
variables, each with a coefficient or ‘eigenvector’ that 
indicates the ‘direction’ of that particular variable for each 
component.  The different PCs are uncorrelated (Kline, 
2002; Lattin et al., 2003; Jolliffe, 2004). 
 
EXAMPLE OF PCA IN NEUROSCIENCE 
Data such as those described in the L-arginine data set 
used as an example previously, can be displayed as a data 
matrix, showing the co-variation of every variable with 
every other variable (Fig. 3).  In the context of the L-
arginine experiment, the general form of these components 
would be: 
 
PC1 = 0.40 agmatine + 0.42 putrescine + 0.17 spermidine 
– 0.02 spermine + 0.49 arginine – 0.16 L-ornithine + 0.51 
L-citrulline – 0.12 glutamate + 0.31 GABA 
 
PC2 = -0.03 agmatine - 0.23 putrescine + 0.46 spermidine 
+ 0.53 spermine + 0.08 arginine – 0.53 L-ornithine + 0.15 
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L-citrulline – 0.35 glutamate + 0.17 GABA etc. 
     For each PC the numbers are the coefficients for the 
different neurochemical variables in the linear equation.  
The number of principal components (PCs), which can be 
large, is usually displayed in decreasing order of 
importance in explaining the variability in the data matrix.  
This is often shown graphically in a ‘Scree plot’ (Fig. 4). 
     A major decision that has to be made in PCA is whether 
to use the covariance matrix or the correlation matrix for 
analysis.  If the correlation matrix is used, then the data 
have to be standardized, i.e., each value subtracted from 
the mean for that variable and divided by the standard 
deviation (i.e., ‘z scores’).  This is done so that extreme 
differences in variance, e.g., due to different measurement 
scales, do not disproportionately affect the analysis. 
     PCA is an exploratory method that does not make many 
assumptions (the covariance or correlation matrices can be 
used but often the latter are preferable).  For FA, there is a 
formal statistical model, and assumptions of multivariate 
normality etc. become important.  For FA, the correlation 
matrix must be used. 
     The interpretation of the meaning of the components or 
factors relies on the size of the eigenvalue, i.e., how much 
variation in the data that it explains, and the contrasts 
between the eigenvectors for the variables relating to that 
eigenvalue.  There is no clear answer to the question of 
how many components should be used; however, it is ideal 
to have a small number of PCs that explain most of the 
variation in the data (Manly, 2005).  Loading plots, which 
represent the variance or magnitude of the variables within 
a PC, are often used to compare the different variables for 
the first two or three PCs (Fig. 5). 
     Because the interpretation of the PCs relies on the 
loadings, sometimes ‘rotations’ are used to maximize the 
contrasts between them while maintaining the relationship 
between the variables in the PCs.  Examples include 
‘varimax’ and ‘quartimax’ rotations (Kline, 2002; Lattin et 
al., 2003; Jolliffe, 2004; Manly, 2005). 
 

 
 
Figure 4.  Scree plot for the L-arginine data set showing the size 
of the eigenvalues for the first 9 PCs.  In this case, the first two 
PCs explain about 77% of the variation in the data.  From Liu et 
al. (2010). 

 
Figure 5.  Loading plot showing the weighting or loadings for the 
first 2 PCs.  Note the close co-variation of spermine and 
spermidine, which are chemically related.  From Liu et al. (2010). 

 
     Whether methods such as PCA and FA are of any use 
in the analysis of multiple variables depends very much on 
whether considering the different variables together, as a 
component, makes sense in the context of the research 
question; and also, on what meaning can be attributed to 
the differences between the loadings.  In the analysis of 
the L-arginine data set from Liu et al. (2010), these 
methods did prove useful.  While the first 2 PCs accounted 
for approximately 77% of the variation in the data (Fig. 4), 
the first 3 PCs explained almost 87% (data not shown).  
Therefore, relatively few PCs were needed to account for 
the variation in the data.  There appeared to be a clear 
relationship between the loadings for PC1, with agmatine, 
GABA, L-citrulline, L-ornithine and L-arginine, all exhibiting 
high, positive values (i.e., > 0.7; see Fig. 5).  For PC1, the 
loading values for spermine and spermidine were very 
similar, as expected given their chemical relationship.  PC1 
contrasted sharply with PC2, where all of these variables, 
except for agmatine, showed negative values (see Fig. 5).  
It might be expected that these 5 variables would vary 
together, since agmatine is synthesized from L-arginine, 
and L-ornithine and GABA are also generated from it via 
the enzyme, arginase (Fig. 1).  Similarly, L-citrulline is 
produced from L-arginine by the enzyme, nitric oxide 
synthase (NOS) (Fig. 1). 
     However, PCA is often useful in neuroscience research 
in which there are hundreds of variables, for example, 
metabolomics, where it is useful to determine whether 
there is a change in the overall pattern of metabolites in 
different brain regions (e.g., He et al., 2017).  Figure 6 
shows an example in which PCA was found to be very 
useful.  It shows PC2 plotted against PC1 with loading 
scores where the PCs represent the combination of 88 
metabolites from the auditory cortices of rats either 
exposed to noise trauma or exposed to a sham condition.  
It can be seen that the purple dots, representing the 
acoustic trauma group, are well separated from the red 
dots, representing the sham controls, and this 
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demonstrates that exposure to noise trauma has caused a 
metabolite shift in this area of the brain (He et al., 2017).  
Due to the number of variables, it is advantageous in this 
case to consider the relationship between all of the 
variables in single components, and whether these 
variables, as a ‘system’, change in the experimental group 
relative to the control group (He et al., 2017).  This 
statistical procedure has been used extensively in the 
context of ‘metabolomics’, the analysis of metabolites, and 
often the principal components are then used in an 
orthogonal partial least squares discriminant analysis 
(OPLS-DA), in which the predictor variables are actually 
PCs and therefore are independent of one another 
(‘orthogonal’) (He et al., 2017). 
 

 
 
Figure 6.  Loading plot showing PC2 (to[1]) against PC1 (t[1], 
where the purple dots represent the acoustic trauma group and 
the red dots, the sham controls.  Note the clear separation of the 
two groups.  From He et al. (2017) with permission. 

 
     PCA and FA can be performed quite easily in SPSS 24 
under the ‘Dimension Reduction’ menu item in the 
‘Analyze’ menu.  Once again, Field (2011) provides step-
by-step, instructions on how to use SPSS to perform PCA, 
including explicit interpretations of the menus and the 
results that are generated (see pp. 627-685). 

 
CLUSTER ANALYSIS 
Another multivariate statistical method that has not been 
used extensively in the context of neuroscience, is cluster 
analysis.  Cluster analyses (CAs) are a type of non-
parametric analysis that is used to explore the natural 
groupings of variables in a data set (Manly, 2005).  
Therefore, assumptions such as multivariate normality and 
equality of the variance-covariance matrices are not 
required (Marcoulides and Hershberger, 1997; Manly, 
2005).  Different measurements of the distance between 
the variables, such as Euclidean or Mahalanobis distance, 
are used to relate them to one another, and specific 
algorithms (e.g., Ward Minimal Variance Linkage) are used 
to determine the clusters (Marcoulides and Hershberger, 
1997).  The standardized data (i.e., z scores) are usually 

used in order to avoid bias introduced by differences in 
scales of measurement. 
 
EXAMPLE OF CAS IN NEUROSCIENCE 
As an example of the application of this method, Figure 7 
shows CAs for the data from Liu et al. (2017).  
Agglomerative CAs, in which each variable is initially 
considered its own cluster, were used on the correlation 
coefficient distance.  Some algorithms, such as single 
linkage, are prone to produce long strings of clusters 
(‘chaining’) (Lattin et al., 2003).  Comparisons of the 
different kinds of CAs for the VNC data suggested that the 
Complete linkage, McQuitty linkage, Average linkage and 
Ward linkage algorithms for determining clusters, all 
produced similar results.  Ward’s method, based on the 
objective of obtaining the smallest within-cluster sum of 
squares (the ‘minimal variance principle’), was used (Lattin 
et al., 2003). 
 

 
 
Figure 7.  Dendrogram showing the relationship between the 
expression of the different neurochemical variables in the young 
and aged VNC.  The CA was agglomerative and performed on 
the data expressed as z scores, using the squared Euclidean 
distance and the Ward minimal variance method.  From Liu et al. 
(2017). 

 
     CAs are not covered in the SPSS book by Field (2011).  
However, they are relatively simple to do using the same 
data formatting as for PCA.  Under the ‘Analyze’ menu, 
choose the ‘Classify’ menu item and then the ‘Hierarchical 
Cluster’ menu option.  A menu will appear that requires you 
to enter the variables you wish to analyze, and then if you 
are interested in the relationships between the data values 
for those variables, you choose ‘Variables’ under ‘Cluster’.  
Under ‘Display’, the ‘Statistics’ and ‘Plots’ options should 
be selected, and then after selecting ‘Statistics’ in the right-
hand menu, you can choose the ‘Agglomeration Schedule.’  
Under the ‘Plots’ menu, it is usual to select ‘Dendrogram’ 
(see Fig. 7), and then you need to select ‘Method.’  In the 
‘Method’ menu, you need to select one type of CA.  There 
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are 7 options, each with their own strengths and 
weaknesses (Lattin et al., 2003; Manly, 2005); however, 
we have found that Ward’s method works reliably (Liu et 
al., 2010; Liu et al., 2017).  Under the ‘Measure’ menu 
item, you need to select a method of ‘Distance’ 
measurement, which could be ‘Squared Euclidean 
Distance’ (Lattin et al., 2003; Manly, 2005).  Lastly, and this 
is very important, you need to select ‘Z Scores’ under the 
‘Transform Values’ and ‘Standardize’ menus, if your data 
are not already standardized (see above).  Now press 
‘Continue’, and ‘OK’ in the main menu, and the results will 
be generated.  Dendrograms show the co-variation of the 
values for the variables as a re-scaled distance value along 
the y axis, where small values for variables connected 
close to the x axis represent those that strongly co-vary.  
Interpreting the dendrogram is a matter of visually 
inspecting these co-variations (Fig. 7).  CAs can also be 
performed easily in the R package, Rattle (Williams, 2009; 
Williams, 2011), although there are fewer options than in 
SPSS 24. 
 

MULTIPLE LINEAR REGRESSION 
Yet another statistical method that has been under-
employed in neuroscience is multiple linear regression 
(MLR).  Although not strictly a multivariate statistical 
method, since there is only one dependent variable at a 
time, MLR is a part of the general linear model (GLM) that 
is useful for determining whether one variable can be 
predicted from a combination of other variables.  Simple 
linear regression can be expanded to include more than 
one predictor variable to become MLR. 
     MLR has the general form: 
 

Y = β0+ = β1X1 + = β2X2 +...= βpXp + 
 
Where Y = the quantitative dependent variable; X1, X2,...Xp  
are independent variables; β1, β2, ....βp are coefficients;  β0 

is the intercept and  is the error term (Brook and Arnold, 
1985; Ryan, 2009; Stevens, 2009). 
 
     Canonical correlation analysis is an extension of MLR in 
which multiple Y variables are related to multiple X 
variables (Manly, 2005). 
     However, formal statistical tests for MLR, like those for 
simple linear regression, make assumptions regarding the 
distribution of the data, which cannot always be fulfilled.  
These assumptions are the same as those for other 
methods in the general linear model, such as ANOVA and 
analysis of covariance (ANCOVA): that the residuals are 
normally distributed, with homogeneity of variance, and 
that they are independent of one another (e.g., not 
autocorrelated) (Brook and Arnold, 1985; Rutherford, 2001; 
Vittinghoff et al., 2005; Doncaster and Davey, 2007; Gamst 
et al., 2008; Fig. 8).  Furthermore, the predictor variables 
should be numerical, although indicator variables can be 
used in order to include nominal variables (e.g., binary 
coding to represent male and female).  The violation of the 
assumption of normality can sometimes be redressed 
using data transformation, which may also correct 
heterogeneity of variance, but other issues such as 

autocorrelation, are not easily dealt with and methods such 
as time series regression may be required (Brook and 
Arnold, 1985; Vittinghoff et al., 2005; Ryan, 2009). 
     Unlike simple linear regression, MLR is more 
complicated in terms of avoiding potential artifacts.  
Because R2 will increase as more independent variables 
are incorporated into the regression model, the adjusted R2 
must be used in order to compensate for the number of 
variables included. For k = 1 variables, the R2 and adjusted 
R2 are approximately equal. 
     There are various forms of MLR: forward regression, 
backward regression, stepwise regression and best 
subsets regression.  In forward regression, predictors are 
added into the model one at a time (if alpha is set to 1.0, 
then all of them will be included, in ascending order of 
significance).  In backward regression, predictors are taken 
out one at a time (if alpha is set to 0, all of them will be 
taken out, in descending order of significance).  Backward 
regression tends to be preferred because it allows 
examination of the interaction between variables.  In 
stepwise regression, the program stops at each step and 
checks whether the variables, either in the model or not, 
are the best combination for that step.  The adjusted R2 will 
change as different variables are included and an F test 
can be done at each step to determine whether it has 
made a significant difference.  Best subsets regression, 
however, computes all possible MLR models from which 
the researcher must choose the best, based on the 
adjusted R2 and various diagnostic information regarding 
the validity of the regression model.  Two of the greatest 
problems in MLR are ‘over-fitting’ and ‘multicollinearity’ 
(Babayak, 2004).  If the regression variables are highly 
inter-correlated, multicollinearity occurs.  This inflates the 
variance of the least squares estimates and therefore the  
 
 

 
 

Figure 8.  Diagnostic plots for L-citrulline following MLR showing 
the residuals versus fitted values, normal quantile-quantile (Q-Q), 
scale location and residuals versus leverage plots.  From Smith et 
al. (2013a) with permission. 
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coefficients will be inaccurate, which can lead to the 
situation in which the F test for the regression is significant 
without any single t test for an individual variable being 
significant.  In this case, one or more of the highly 
correlated variables should be removed from the 
regression model.  One way of controlling for 
multicollinearity is using an index such as the Mallow’s Cp 
index.  The adjusted R2 should be high but the Mallow’s Cp 
index (= (the sum of squares for the error at the current 
step / mean square error for the full regression) - (n - 2p), 
where n = total number of observations and p = number of 
estimated coefficients), should be as small as possible.  
Ideally, it should be one more than the number of 
parameters in the current step.  Other indices of 
multicollinearity include the variance inflation factor (VIF) 
and tolerance (1/VIF).  Different software packages (e.g., 
SPSS and Minitab) offer different options. 
     Autocorrelation in the data can be tested using the 
Durban-Watson statistic (Fields, 2011).  Like most other 
multivariate statistical procedures, MLR is prone to artifacts 
and researchers need to be cautious when using it 
(Babayak, 2004). 
     MLR is almost as easy to do in SPSS 24 as simple 
linear regression, in which there is only one explanatory 
variable.  The main difference, in terms of using the GUI, is 
the number of independent variables entered for the 
regression model, and the method that must be selected 
(i.e., backward versus stepwise MLR).  Field (2011), once 
again, provides an excellent step-by-step set of instructions 
for performing MLR (pp. 197-263).  An example of MLR 
applied to the L-arginine data set, is provided below, 
following the random forest regression section, which is 
compared with MLR. 
 

RANDOM FOREST REGRESSION 
Modelling using regression trees has been used for 
decades; nonetheless, its use in neuroscience has been 
very limited.  In regression tree modelling, a flow-like series 
of questions is formulated for each variable, known as 
‘recursive partitioning’, thereby subdividing a sample into 
groups with maximal homogeneity by minimizing the 
within-group variance, with the objective of determining a 
numerical response variable (Vittinghoff et al., 2005; Hastie 
et al., 2009).  The predictor variables can be continuous 
variables such as interval or ratio variables, or they can be 
ordinal or nominal variables.  In contrast to MLR, which 
makes assumptions about the distribution of the data, 
regression trees make no distributional assumptions.  The 
data are often divided into training and test data sets (e.g., 
70:30) and the mean square error (MSE) between the 
model based on the training data, and the test data, is 
calculated as a measure of how well the model describes 
the data.  Variables are chosen to divide the data using the 
reduction in the MSE that is achieved following a split (i.e., 
the information gained).  Interactions between different 
predictor variables are automatically incorporated into the 
model and variable selection is not necessary because 
predictors which are irrelevant are excluded from the 
model.  This means that complex, possibly non-linear 
interactions, between variables are easier to accommodate 

compared to linear regression modelling (Hastie et al., 
2009). Using the computational power of modern 
computers, Breiman et al. (1984) extended the concept of 
regression trees by simultaneously generating hundreds of 
trees, which became known as ‘random forests’, based on 
a random selection of a subset of data in the training set.  
The various regression tree models are then averaged in 
order to predict the dependent variable with the smallest 
MSE possible (Marsland, 2009; Hastie et al., 2009; 
Williams, 2011). 
     Random forests (RFs) can also be used for 
classification purposes, in which case the solution is based 
on the number of ‘votes’ from different trees for a particular 
category (Williams, 2009; Williams, 2011).  The effect of 
variable removal on the mean decrease in accuracy, the 
‘out of bag’ (OOB) error, and the overall classification 
matrix error (‘confusion matrix error’), are used to evaluate 
the success of the classification.  The ‘out of bag’ (OOB) 
error is the error based on the observations that were 
excluded from the subset of the training data (the ‘bag’) 
used to generate the decision tree (Williams, 2011).  Unlike 
LDA, random forest regression and classification make no 
distributional assumptions and therefore can be applied to 
situations in which the sample sizes are small relative to 
the number of variables (Hastie et al., 2009; Williams, 
2011). 
     Random forest regression and classification, along with 
SVMs and CAs, can be carried out using specific packages 
in the statistics program R (Crawley, 2007; Field et al., 
2012; Davies, 2016), and are easily done using the R 
package, ‘Rattle’, which has a user-friendly GUI and is 
entirely menu-driven (Williams, 2009; Willams, 2011). 

 
EXAMPLES OF MLR AND RANDOM FOREST 
REGRESSION IN NEUROSCIENCE 
Figure 9 shows a random forest regression for the 
prediction of spermine from the other variables.  The 
proportion of variance explained was 0.94, which was very 
high.  Figure 10 shows how the error in prediction 
decreased as the number of trees increased.  As a 
comparison of the application of MLR and random forest 
regression (RFR) to the data from Liu et al. (2010) 
described above to illustrate LDA, both forms of regression 
were applied to the prediction of each of the nine 
neurochemicals from the other eight.  Figure 11 shows the 
adjusted R2 (MLR) and variance explained values (RFR), 
as well as the residual mean square error (RSE) values, for 
the MLRs and RFRs (respectively). 
     It was apparent that the adjusted R2 values for the 
MLRs were generally higher than the variance explained 
values for the RFRs: 5/9 of them were ≥ 0.80 compared to 
3/9 for the variance explained values (Figure 11).  The 
RSE values were more similar but lower for the MLRs than 
the RFRs in all but 3 cases (Figure 11).  Nonetheless, the 
general patterns for the adjusted R2/variance explained 
values and the RSEs were similar for the MLRs and the 
RFRs.  Although MLR appeared to be more predictive for 
this particular data set, both forms of regression could 
potentially be used to predict behavioral, 
neurophysiological and neurochemical variables in the 



The Journal of Undergraduate Neuroscience Education (JUNE), Spring 2018, 16(2):R20-R32      R29 
 

context of neuroscience research (Smith et al., 2013a,b; 
Aitken et al., 2017). 
 
 

 
 
Figure 9.  Variables in order of importance for the random forest 
regression for spermine, which had the highest proportion of 
variance explained (94%).  The mean decrease in Gini coefficient 
is an indication of the extent to which each variable contributes to 
the homogeneity of the nodes and leaves in the random forest.  
From Smith et al. (2013a) with permission. 

  

 
Figure 10.  Decrease in error as a function of the number of trees 
for the random forest regression for spermine.  From Smith et al. 
(2013a) with permission. 

 
 

A 

 

B 

 
 

Figure 11.  (A) Comparison of the adjusted R2 values (MLRs) and variance explained values (RFRs), and (B) the RSE values, for the 
MLRs and RFRs for the neurochemical variables from Liu et al. (2010).  (A) In each case, the R2 or variance explained values 
represent how much of the variance of that variable could be accounted for by the combination of all of the remaining variables, e.g., an 
R2 of 0.93 for the MLR means that 93% of the variation in spermine could be predicted by a combination of the other variables.  While 
R2 values can be used for MLR, RFR uses ‘variance explained values’ in an analogous way, so that a ‘variance explained value’ of 0.94 
for spermine means that, using RFR, 94% of the variation in that variable could be explained by a combination of the other variables.   
(B) This figure shows the error in the model predictions for the two different kinds of regression, in the case of each prediction for each 
variable.  Note the similarity in the pattern of the errors, despite the use of quite different regression methods.  Note that, in both cases, 
the prediction for glutamate exhibits the most error (from Smith et al., 2013a with permission). 
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CONCLUDING REMARKS 
Phenomena in neuroscience, whether at the level of 
genes, proteins, neurons or behavior, almost always 
involve the interaction of multiple variables, and yet many 
areas of basic neuroscience, in particular, employ 
univariate statistical analyses almost exclusively.  This 
limits the ability of studies to reveal how the interactions 
between different variables may determine a particular 
outcome.  For example, for the L-arginine data set that has 
been used as an example in this review, most of the 
individual neurochemicals measured were significantly 
different in the VNC and CE between young and aged 
animals, but this on its own does not indicate how they 
may work together to determine the consequences of 
aging.  These neurochemicals are part of a complex 
system with feedback pathways (Fig. 1) and it is important 
to understand how this system works as a whole.  The fact 
that age could be predicted from spermine and spermidine 
levels alone in the CE, with 100% accuracy, suggests that 
these two polyamines, which are chemically related, have 
special significance in the neurochemical signature of 
aging, beyond the other neurochemicals measured, even 
though many of these other neurochemicals were 
significantly different between the young and aged animals 
as well.  This does not necessarily mean that they have a 
causal influence in the aging process; in fact, Fig. 1 shows 
that changes in spermine and spermidine are likely to be 
part of the polyamine output of the L-arginine system.  
However, their predictive significance suggests that they 
may be some kind of ‘biomarker’ for aging in the CE.  
Determining any causal role that they may have in the 
larger aging process, would require further experimental 
evidence.  Further studies, using multiple age groups, have 
extended these findings (Liu et al., 2017).  Elsewhere, 
MVAs and data mining methods have been used to explore 
the way that combinations of variables can account for 
neurochemical and behavioral changes following the loss 
of vestibular function (Zheng et al., 2012; Smith et al., 
2013b; Zheng et al., 2013; Aitken et al., 2017) and auditory 
function (He et al., 2017).  In clinical neuroscience 
research, MVAs and data mining methods have been used 
to predict the progression of patients from one neurological 
disorder to another (e.g., Krafczyk et al., 2006; Brandt et 
al., 2012) and the probability that the early adolescent use 
of Cannabis can lead to the development of psychotic 
symptoms in later life (e.g., Caspi et al., 2005).  These 
methods are now in routine use in areas such as 
genomics, proteomics, metabolomics (Dziuda, 2010) and 
the analysis of fMRI data (e.g., Chen et al., 2017).  
Electrophysiological research in neuroscience is 
increasingly moving to the use of multi-electrode arrays 
using 16 or more micro-electrodes simultaneously, and in 
this situation one of the main objectives is to determine 
how different brain regions change in relation to one 
another, which requires MVA (e.g., Staude et al., 2010). 
     Correlation amongst variables in multivariate data is 
often a concern.  In the case of MLR, it is a significant 
problem and specific tests of multicollinearity must be 
undertaken to ensure the validity of the analysis (Brook 

and Arnold, 1985; Vittinghoff et al., 2005; Ryan, 2009).  
Similarly, multicollinearity is a problem for LDA (Noes and 
Mevik, 2001).  For PCA, too much correlation amongst the 
variables can be a problem; however, so can too little 
(Field, 2011).  Since PCA is looking for underlying 
components or dimensions, it would be expected that the 
variables comprising those dimensions share a reasonable 
amount of correlation.  In the PCA menu of SPSS 24, 
Bartlett’s test can be used to determine whether the degree 
of correlation is too low and the correlation matrix 
resembles what is known as an ‘identity matrix’ (Joliffe, 
2004; Field, 2011).  On the other hand, if the degree of 
correlation is too high, this can also be a problem.  If all of 
the variables were perfectly correlated, then the correlation 
matrix would have the property known as ‘singularity’ 
(Joliffe, 2004; Field, 2011).  Multicollinearity is not a major 
problem for PCA as an exploratory technique (although it is 
for the more formal FA).  However, the contribution of 
highly correlated variables to the PCs may be over-
emphasized and Field (2011) suggests that it may be wise 
to inspect the correlation matrix and remove variables that 
are highly correlated, e.g., R > 0.8.  There are no simple 
solutions to this issue and the best procedure is to carefully 
examine the effects of these variables on the PCA results.  
Removing variables without clear evidence of redundancy 
could also adversely affect the validity of the analysis.  In 
the case of the non-parametric CA, the dendrogram is 
intended to reveal the degree of correlation amongst the 
variables, and in this case the objective is to determine the 
variables that co-vary, although it is usually of more 
interest to find co-variation that was not expected.  For 
data mining methods such as SVMs and RFRs, correlation 
is less of a concern, because there are few distributional 
assumptions (Breiman et al., 1984; Marsland, 2009; Hastie 
et al., 2009) and it would be expected that variables that 
are not useful in discriminating between groups would be 
excluded or de-emphasized (Pang et al., 2006).  For 
SVMs, the influence of correlation will depend on the 
specific kernel used, e.g., the linear kernel will be subject 
to the effects of multicollinearity in a similar way to MLR.  A 
major advantage of methods such as SVMs and RFRs is 
the use of cross-validation and ROC curves to determine 
the predictive success of the model (Hastie et al., 2009; 
Williams, 2011). 
     Although a good understanding of univariate statistics is 
necessary in order to use MVAs effectively (see Smith, 
2017), it is an investment in time worth making in order to 
obtain maximal benefit from data that are often difficult to 
collect and may involve the sacrifice of animal life.  The 
advances that have been made and are currently occurring 
in technology mean that more often than not in the future, 
neuroscientists will have data from many variables 
simultaneously and MVAs and data mining procedures will 
offer the only way of effectively analyzing such data sets. 
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