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Undergraduate statistics courses in the brain and behavioral 
sciences tend to be well-grounded in classical null 
hypothesis significance testing.  However, many journals in 
the fields of neuroscience and psychology are turning away 
from these classical methods and their reliance on p-values 
in favor of alternative methods.  One such alternative is 
Bayesian inference, and in particular, the Bayes factor, 
which indexes the extent to which observed data supports 
one hypothesis over another.  As such, the Bayes factor 
provides an easy-to-interpret measure of evidence.  
However, this ease of interpretation is often in stark contrast 

with the actual ease of computation, even for simple 
experimental designs.  In this paper, I present an easy-to-
use formula for computing Bayes factors for two common 
hypothesis testing situations:  the one-way ANOVA and the 
independent samples t-test.  I give examples of its use and 
recommendations of how to report the results, which should 
help any teacher of statistics and research methods begin 
to incorporate Bayesian statistics into quantitative methods 
courses. 
     Key words: Hypothesis testing, Statistical inference, 
Bayesian methods, Bayes factor, statistics education

 

 
 
Statistical inference is one of the core components of the 
undergraduate student curriculum in the brain and 
behavioral sciences.  Most introductory courses teach 
statistical inference from the framework of null hypothesis 
significance testing (NHST), which is based on an 
amalgamation of methods which have been in use for the 
better part of a century.  Despite its age, NHST remains the 
dominant paradigm for inference in our field.  Recently, there 
has been a push for more modern approaches to inference, 
including robust statistics (Wilcox, 2012, inference based on 
effect sizes and confidence intervals (Cumming and Calin-
Jageman, 2017), and Bayesian inference (Wagenmakers, 
2007).  It is the latter that I wish to introduce in this article. 
     Although there are many philosophical reasons to use 
Bayesian inference (e.g., Dienes, 2011; Etz and 
Vandekerckhove, 2016; Wagenmakers, 2007), my 
inclination toward Bayesian methods is pragmatic.  Like 
many other professors who teach undergraduate statistics 
to psychology and neuroscience majors, I simply find that 
my students misunderstand the role of probability in NHST, 
particularly with regard to p-values.  In fact, when these 
students become researchers, these misunderstandings 
tend to persist (Gigerenzer, 2004; Hoekstra et al., 2014).  
One of the most common such misinterpretations is that the 
p-value represents the probability of a certain hypothesis 
being true.  While this is not true, it is certainly quite 
reasonable to want to know the plausibility of a given 
hypothesis after observing data.  If we denote our 
hypothesis H and the observed data D, then this amounts to 
computing 𝑝( 𝐻 ∣ 𝐷 ), which we read as “the probability of 
hypothesis H, given data D.”  We call this the posterior 
probability of hypothesis H, or simply, the posterior. 
     While intuitive, such probabilities are not possible to 
calculate in a classical null-hypothesis testing framework.   

However, it is a natural computation within a Bayesian 
framework.  At its core, Bayesian inference is based on 
Bayes’ theorem, which states 
 

𝑝( 𝐻 ∣ 𝐷 ) =  
𝑝( 𝐷 ∣ 𝐻 ) ⋅ 𝑝(𝐻)

𝑝(𝐷)
. 

 
The numerator of the fraction breaks down into the likelihood 
of data D under hypothesis H (the 𝑝(𝐷 ∣ 𝐻) part), and the 

prior probability of hypothesis H (the 𝑝(𝐻) part).  Note that 
while the denominator appears simple, it is arguably the 
most difficult to compute, as it amounts to the total 
probability of obtaining data D under all possible hypotheses 
H.  However, it is simply a scaling factor, so for all practical 
purposes we can ignore it, which gives us an easy way to 
remember Bayes theorem: 
 

posterior = likelihood x prior. 
 

This means that after observing data, we can update our 
prior belief in a hypothesis to a posterior belief by simply 
multiplying the prior times the likelihood.  Thus, Bayesian 
inference can be thought of as a data-driven process for 
updating our belief in a hypothesis. 

 
The Bayes Factor 

It is quite natural to use Bayesian inference in a hypothesis 

testing framework.  A straightforward consequence of Bayes 

theorem allows us to compare the relative plausibility of two 

competing hypotheses.  Suppose we are interested in 

comparing two hypotheses: a null hypothesis 𝐻0 which 

supposes no effect (i.e., effect size = 0), and an alternative 

hypothesis 𝐻1 which supposes some nonzero effect (i.e., 

effect size ≠ 0). Then Bayes theorem tells us 
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𝑝(𝐻0 ∣ 𝐷)

𝑝(𝐻1 ∣ 𝐷)
=

𝑝(𝐷 ∣ 𝐻0)

𝑝(𝐷 ∣ 𝐻1)
⋅

𝑝(𝐻0)

𝑝(𝐻1)
. 

 
This equation can also be interpreted in terms of the 
“updating” metaphor.  Specifically, it says that the posterior 
odds (the left side of the equation) equals the ratio of 
likelihoods times the prior odds (the right side of the 
equation).  Another way to think about this is that the 
posterior odds equals the prior odds times an updating 
factor.  This updating factor (the ratio of likelihoods) is called 
the Bayes factor (Kass and Raftery, 1995; Jeffreys, 1961), 
and is a key quantity in Bayesian hypothesis testing.  For 
our discussion here, it is the primary statistic of our interest. 
     Intuitively, the Bayes factor can be interpreted as the 
weight of evidence provided by a set of data.  For example, 
suppose that a researcher believes that two hypotheses 𝐻0 
and 𝐻1 are equally plausible a priori.  That is, the researcher 

assigns the prior odds of 𝐻0 over 𝐻1 to be 1:1.  Suppose next 
that after observing data D, the Bayes factor is computed to 
be 10.  The implication is that the posterior odds of 𝐻0 over 

𝐻1 has increased by a factor of 10.  That is, the prior odds 
ratio of 1:1 has now been updated to a posterior odds ratio 
of 10:1.  This means that our observed data has been quite 
informative for our relative belief in the two competing 
hypotheses; after seeing the data, our relative belief in the 
null hypothesis over the alternative hypothesis is now 10 
times greater.  As such, the Bayes factor provides an easily 
interpretable measure of the weight of evidence provided by 
data D. 
     In order to help with interpreting Bayes factors, various 
classification schemes have been proposed.  One of the 
simplest is a four-way scheme proposed by Kass and 
Raftery (1995), who suggested that Bayes factors between 
1 and 3 are considered weak evidence; between 3 and 20 
constitutes positive evidence; between 20 and 150 
constitutes strong evidence; and beyond 150 is considered 
very strong evidence. 
     Another important property of Bayes factors is their 
inherent symmetry.  There is nothing special about the order 
in which we addressed hypotheses 𝐻0 and 𝐻1 in the 
discussion above.  If one wanted to assess the weight of 
evidence in favor of 𝐻1 over 𝐻0, the equations above could 
simply be adjusted by taking reciprocals.  As such, direction 
is important when talking about Bayes factors, and thus, one 
must take care with notation.  A common notational 
convention is to define 𝐵𝐹01 as the Bayes factor for 𝐻0 over 

𝐻1, and similarly, to define 𝐵𝐹10 as the Bayes factor for 𝐻1 

over 𝐻0.  Note that since 𝐵𝐹01 and 𝐵𝐹10 are reciprocals of 
each other, we can easily compute one from the other via 
the relationship 
 

𝐵𝐹10 =  
1

𝐵𝐹01

. 

 

     In summary, the Bayes factor provides an easily 
interpretable index of preference for one hypothesis over 
another that has two primary advantages over traditional null 
hypothesis testing techniques.  First, it provides a direct 
measure of evidence, which we define as the extent to which 
a set of observed data should update our belief in one 

hypothesis over the other.  Second, whereas traditional null 
hypothesis testing does not allow one to “accept” a null 
hypothesis, it is perfectly acceptable and well-defined to 
measure the evidence in favor of a null hypothesis by 
computing a Bayes factor 𝐵𝐹01. 
 
Computing Bayes Factors 
Given these advantages, it may be surprising that the use of 
Bayes factors is not more widespread within the brain and 
behavioral sciences.  One possible reason for this lack of 
adoption is that Bayes factors can be quite difficult to 
compute.  Fortunately, there is an approach to computing 
Bayes factors that is relatively simple and easy to implement 
with beginning statistics students. 
     The method presented here is known as the BIC 
approximation.  Though originally attributed to Kass and 
Raftery (1995), the method I will demonstrate is based on 
an extension of work by Wagenmakers (2007) and Masson 
(2011).  The formula presented in Box 1 gives the Bayes 
factor 𝐵𝐹01 for a between-subjects analysis of variance 
design, which is one of the statistical “workhorses” of the 
undergraduate brain and behavioral sciences.  The relevant 
details of the derivation are beyond the scope of this article, 
but they can be found in Faulkenberry (2017). 

 

 
     In the following I will present two examples of how to use 
this formula to add a Bayesian perspective on some typical 
inference problems found in most undergraduate statistics 
courses in the brain and behavioral sciences. 

 
Example 1 – One-way ANOVA design. 
The following example comes from the popular textbook of 
Gravetter and Wallnau (2017, p. 385-388), who described a 
hypothetical replication of Weinstein, McDermott, and 
Roediger (2010).  In the study, a sample of 18 participants 
read a text passage and then studied the passage again 
under one of three conditions.  In one condition, participants 
simply re-read the passage again.  In a second condition, 
participants answered a set of already-prepared 
comprehension questions about the text passage.  In a third 
condition, participants generated and answered their own 
comprehension questions.  The results indicated that there 

Box 1: Computing a Bayes Factor from ANOVA 
 
The formula for computing 𝐵𝐹01 for a between-subjects 
ANOVA design is: 
 

𝐵𝐹01 =  √𝑛𝑑𝑓1 ⋅ (1 +
𝐹𝑑𝑓1

𝑑𝑓2

)
−𝑛

 

 
where: 
 

(a) n = sample size, 
(b) 𝑑𝑓1 = between-groups degrees of freedom, 

(c) 𝑑𝑓2 = within-groups degrees of freedom, and 
(d) F = the obtained F-score from the analysis of 

variance. 
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was a significant difference in comprehension scores among 
these three study conditions, F(2, 15) = 7.16, p = 0.007. 
     From this output, we can see that our data seem to 
support the alternative hypothesis of a nonzero effect (i.e., 
that the population means differ) over the null hypothesis of 
a zero effect (i.e., that the population means are equal).  
Using a Bayes factor, we can actually quantify the weight of 
evidence that the data provides for the alternative.  From 
Box 1, one can see that we simply need four numbers to 
proceed: 
 

(a) n = 18, 
(b) 𝑑𝑓1 = 2, 

(c) 𝑑𝑓2 = 15, 
(d) F = 7.16. 

 
We can now substitute these values into the Bayes factor 
formula provided in Box 1. 
 

𝐵𝐹01 =  √𝑛𝑑𝑓1 ⋅ (1 +
𝐹𝑑𝑓1

𝑑𝑓2

)
−𝑛

 

 

= √182 ⋅ (1 +
7.16 ⋅ 2

15
)

−18

 

 
= 0.0432. 

 
How do we interpret this number?  It is important to 
remember that 𝐵𝐹01 is the weight of evidence in favor of the 
null.  To measure the weight of evidence for the alternative, 
we need 𝐵𝐹10, which is the reciprocal of 𝐵𝐹01.  Computing 
this reciprocal gives us 

𝐵𝐹10 =  
1

𝐵𝐹01

 

 

=  
1

0.0432
 

 
=  23.15. 

 
Thus, after seeing the data, our belief in the alternative 
hypothesis is increased by a factor of 23.15, which, 
according to the above-presented classification scheme of 
Kass and Raftery (1995), constitutes strong evidence for a 
non-zero difference in comprehension scores among the 
three study methods.  Note that this measure of evidence is 
for a specific hypothesis (the alternative hypothesis of non-
zero effect size).  The Bayes factor does not directly give us 
any information about the size of the effect as estimated 
from the data.  As such, it is recommended to report and 
interpret effect sizes alongside the Bayes factor (e.g., 
Cumming and Calin-Jageman, 2017). 
 
Example 2 – Independent samples t-test. 
This example was first presented in Calin-Jageman (2017) 
and concerns data from Borota et al. (2014), who found that 
with of a sample of 73 participants, those who received 200 
mg of caffeine had significantly better scores on a test for 

memory of objects than did participants who took a placebo, 
t(71) = 2.0, p = 0.049.  Borota et al. (2014) concluded that 
caffeine enhances memory consolidation. 
     As in the previous example, we can again measure the 
weight of evidence provided by this data by computing a 
Bayes factor.  Even though the formula in Box 1 is presented 
in terms of an ANOVA, we can easily adapt the formula for 

use with t-tests as well.  First, we note that since 𝐹 = 𝑡2 
(Gravetter and Walnau, 2017, p. 401), a simple conversion 
gives us 
 

𝐹 = 𝑡2 = (2.0)2 = 4.0. 
 
Now, since there are only two groups, the between-groups 
degrees of freedom is 𝑑𝑓1 = 1, and the within-groups 
degrees of freedom is equal to the degrees of freedom for 
the t-test, and thus 𝑑𝑓2 = 71.  Finally, we have n = 73. 

Substituting these four values into the Bayes factor formula 
from Box 1 gives us 
 

𝐵𝐹01 =  √𝑛𝑑𝑓1 ⋅ (1 +
𝐹𝑑𝑓1

𝑑𝑓2

)
−𝑛

 

 

= √731 ⋅ (1 +
4.0 ⋅ 1

71
)

−73

 

 
= 1.16 

 
This tells us that the data should update our belief in the null 
hypothesis by a factor of 1.16.  In other words, even though 
the original t-test produced a significant p-value, the Bayes 
factor actually indicates a very slight preference for the null 
hypothesis.  Note that according to the Kass and Raftery 
(1995) classification scheme, this result constitutes weak 
evidence for the null, and as such, the data are not very 
informative for our relative belief in either hypothesis.  Note 
also that this conclusion can be viewed as largely consistent 
with the confidence-interval approach to this problem 
described by Calin-Jageman (2017), who showed that the 
reported caffeine-related improvement was within the 
margin of error for the test.  Though the Bayesian approach 
and the confidence-interval approach answer different 
questions (the Bayes factor compares hypotheses whereas 
the confidence interval provides an estimation of the size of 
the effect), they both indicate that the data are not very 
informative to the given research question. 
 
Summary and Next Steps 
The Bayes factor provides a tool for inference that directly 
indexes the weight of evidence for a hypothesis that is 
provided by a set of data.  One advantage is that the 
evidence can be in favor of either the null or the alternative, 
and as such, the Bayes factor is an excellent tool for 
interpreting nonsignificant results (Dienes, 2014).  Though 
beyond the scope of this paper, Bayesian inference also 
allows an elegant solution to the classic problem of multiple 
comparison (Gelman et al., 2012), a problem which appears 
often in the large, complex data sets typical of many 
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neuroscience experiments (Bennett et al., 2009). 
     Please note that there is much more to Bayesian 
inference than the Bayes factor.  The Bayes factor is another 
tool for hypothesis testing, albeit one that is more informative 
than p-values alone.  Like traditional null hypothesis tests, 
they lend themselves to yes/no decisions about hypotheses, 
but they do not directly convey information about effect 
sizes, practical significance, etc.  As such, the Bayes factor 
merely scratches the surface what can be done with 
Bayesian inference; the interested reader should consult the 
excellent article by Etz, Gronau, Dablander, Edelsbrunner 
and Baribault (2017) for a more complete reading list to get 
started with Bayesian inference.  Further detail on using 
Bayesian inference in an estimation context can be found in 
Kruschke and Liddell (2017). 
     In spite of this limitation, I have found that the Bayes 
factor is a good starting place for introducing Bayesian 
inference, as it is the Bayesian version of what we already 
do in our statistical inference courses (hypothesis testing).  
Of course, the straightforward interpretation of Bayes factors 
is balanced with some difficulties.  First, Bayes factors for 
more complex designs are quite nontrivial to compute, and 
such computation is an active area of research today (e.g., 
Nathoo and Masson, 2016).  Second, though not obvious 
from the presentation here, the computation of a Bayes 
factor requires a specification of prior.  In the formula 
presented in Box 1, there is an implicit choice of prior 
assumed, one which is called the unit information prior 
(Masson, 2011).  A different choice of prior will result in a 
different value for the Bayes factor.  However, I have 
previously shown through simulations that this difference is 
marginal, and the results of the formula in Box 1 tend to be 
fairly consistent with other choices of prior (Faulkenberry, 
2017). 
     One should also note that the formula presented in Box 
1 relies only on the summary statistics of an ANOVA, which 
makes it useful in a meta-analytic context.  If one has raw 
data available, the options for computing Bayes factors are 
plentiful.  The open source software package JASP (JASP 
Team, 2017) provides users with an easy, menu-driven 
interface that provides options for Bayesian versions of 
many common hypothesis tests, including t-tests, ANOVA, 
regression, and chi-squared tests.  The menu interface 
allows the user to flexibly specify priors and the exact form 
of the alternative hypothesis used.  Users of the software 
package R have many options available as well, including 
the package BayesFactor (Morey et al., 2015).  While these 
options are more flexible than the method I present in this 
paper, I still recommend the formula in Box 1 for a first 
introduction to Bayes factors, as (1) it is a relatively simple 
calculation that comes directly from summary statistics, and 
(2) it works even without raw data, which is helpful when 
judging evidential value of published results. 
     Finally, I will point out that the Bayes factors computed in 
this paper provide measures of evidential value for very 
specific forms of the null and alternative hypothesis. 
Specifically, the null hypothesis supposes that the effect size 
is equal to 0, whereas the alternative hypothesis supposes 
that the effect size is not equal to zero.  This form of the null 
and alternative is fairly standard in most beginning statistics 

courses, though one may fairly argue that an effect size 
exactly equal to zero (i.e., a point null hypothesis) is not a 
plausible null, and instead, one may prefer to define a null 
which specifies that the effect size is within a small range of 
0. Such hypothesis tests are possible, though 
computationally more difficult.  However, I would argue that 
the benefit of this computational difficulty may not be worth 
the increased cost, as the results of these tests tend to agree 
with the simpler point null hypothesis test (Berger and 
Delampady, 1987; Iverson et al., 2010). 
     In summary, I recommend the use of the BIC 
approximation to the Bayes factor as a good way to 
introduce Bayesian hypothesis testing to undergraduate 
students in the brain and behavioral sciences.  Through 
some simple calculations, we can easily extend the typical 
results in our statistics and research courses to a Bayesian 
interpretation, which will set them up for their future work in 
our discipline. 
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