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Effective inferential statistical analysis is essential for high 
quality studies in neuroscience.  However, recently, 
neuroscience has been criticised for the poor use of 
experimental design and statistical analysis.   Many of the 
statistical issues confronting neuroscience are similar to 
other areas of biology; however, there are some that occur 
more regularly in neuroscience studies.   This review 
attempts to provide a succinct overview of some of the 
major issues that arise commonly in the analyses of 
neuroscience data.   These include: the non-normal 
distribution of the data; inequality of variance between 
groups; extensive correlation in data for repeated 

measurements across time or space; excessive multiple 
testing; inadequate statistical power due to small sample 
sizes; pseudo-replication; and an over-emphasis on binary 
conclusions about statistical significance as opposed to 
effect sizes.  Statistical analysis should be viewed as just 
another neuroscience tool, which is critical to the final 
outcome of the study.  Therefore, it needs to be done well 
and it is a good idea to be proactive and seek help early, 
preferably before the study even begins. 
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Few neuroscientists would deny the importance of 
inferential statistical analysis for the subject of 
neuroscience, either for the analysis and interpretation of 
one’s own data or simply to understand the neuroscience 
literature.  Much of neuroscience is dominated by 
univariate statistical methods, especially those that are part 
of the general linear model (GLM), such as Student’s t 
tests and analyses of variance (ANOVAs).  Gradually, 
multivariate statistical approaches are becoming more 
common, especially with the appreciation that most 
dependent variables in neuroscience are affected by many 
independent variables which interact in complex ways.  In 
addition, Bayesian statistical approaches are increasingly 
being employed (Lesaffre and Lawson, 2012).  However, a 
barrier to the use of such methods is a lack of 
understanding of basic classical, univariate statistical 
techniques, and in the last several years neuroscience has 
been criticised severely for the poor use of statistical 
procedures, particularly in relation to low statistical power 
(e.g., Button et al., 2013a; Smaldino and McElreath, 2016), 
the use of pseudo-replication (e.g., Lazic, 2010) and invalid 
analyses of interactions (Nieuwenhuis et al., 2011). 
     One problem with improving statistical understanding is 
that many researchers find the concept of null hypothesis 
significance testing (NHST) difficult to accept, because it 
leads to a simple dichotomous decision as to whether there 
is a statistically significant effect, rather than any 
judgement about the size or scientific meaning of any 
effect (see Gigerenzer, 2004; Lew, 2012; Perezgonzalez, 
2015; Szucs and Ioannidis, 2017a, for critical analyses of 
this issue).  NHST is part of traditional, frequentist 
statistical analysis and is not the only approach available; 
for example, Bayesian statistical analyses have become 
increasingly popular in biostatistics in general (Lesaffre and 

Lawson, 2012). Nonetheless, data analysis in 
neuroscience is still dominated by NHST, despite the fact 
that the American Statistical Association (ASA) has made it 
clear that scientific conclusions should not be based solely 
on whether a p value crosses a specific threshold and that 
this value alone does not afford an effective evaluation of 
evidence relating to a hypothesis (Wasserstein and Lazar, 
2016).  Szucs and Ionnidis (2017a) have even suggested 
that NHST should be used only in specific situations. 
     As Perezgonzalez (2015) describes, the NHST is really 
an amalgamation of Ronald Fisher’s approach to testing 
data, which determines the probability of the observed data 
under the null hypothesis, and Neyman-Pearson’s 
approach, which allows testing of the null hypothesis 
against an alternative hypothesis and involves 
consideration of the sample size necessary to obtain 
adequate statistical power and effect sizes.  Perezgonzalez 
(2015) suggests that this fusion of the two forms of 
hypothesis testing actually negates the advantages of each 
and that it would be preferable to revert to their original 
formulations when and where they are appropriate. 
     Although many of the problems faced by neuroscientists 
when performing statistical analysis are similar to other 
areas of biology, there are some that are particularly 
difficult and frequent in neuroscience.  Probably the most 
common example of this is the tendency to use small 
sample sizes in experimental neuroscience.  Sometimes 
this is a result of the cost of animals, expensive 
experimental resources such as antibodies, and of course 
the desire and pressure to minimise the number of animals 
used.  However, sometimes it is simply due to tradition.  
For example, there has been a tendency to use n = 3 
replicates in biochemical experiments, often with no 
justification at all other than that previous studies have 
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done the same (e.g., Verbitsky, 2013; Fosang and Colbran, 
2015). 
     The main objective of this review is to provide a 
succinct overview of some of the most common problems 
in statistical analyses in the neurosciences, as a guide to 
focusing on the statistical issues that are most likely to be 
encountered.  The content is based on over a decade of 
teaching statistics to undergraduate and postgraduate 
neuroscience and neuropharmacology students, as well as 
providing consultation on statistical analyses to 
neuroscience researchers.  Since most neuroscience 
students I have encountered have limited understanding of 
the mathematical basis of statistics, this review will be 
delivered with minimal formal mathematical notation or 
equations. 
 

THE IMPORTANCE OF EXPERIMENTAL 
DESIGN 
Before any experiment begins, attention needs to be paid 
to some basic attributes of good experimental design: 
control groups, random allocation of subjects to conditions, 
blinding and replication.  These concepts should be self-
evident but they are often overlooked in the haste to begin 
and complete experiments in neuroscience (e.g., Kilkenny 
et al., 2009).  The validity and reliability of measurements 
is paramount in obtaining high quality data (Loken and 
Gelman, 2017). 
     Adequate control groups are essential to determining 
whether an intervention has any real effect on a dependent 
variable.  A classic example of lack of an adequate control 
group is a situation in which the effects of an intervention 
are measured over time but the control group is measured 
at one time point only, for example, the shortest one, 
resulting in the possibility that any effects observed in the 
treatment group are simply a result of the passage of time 
rather than the treatment itself. 
     Random allocation of subjects to experimental 
conditions is critical to avoiding bias in the way that 
subjects are used to represent a population.  Probability 
sampling is based on the idea that each subject has a 
known probability of being selected for a condition.  If the 
allocation of subjects to conditions is not truly random, then 
there is a possibility that the samples are biased.  For 
example, in the study of the effects of 3,4-
methylenedioxymethamphetamine (MDMA, ‘Ecstasy’) on 
the brain, if only people who present to major hospital 
neurology clinics are sampled, then there is the potential 
for bias to affect the study.  Such people are more likely to 
suffer from more severe adverse side effects and live near 
a major University hospital, which may give them a 
particular socioeconomic profile.  In fact, in many 
neuroscience publications, random allocation of subjects to 
conditions is not mentioned, although it is assumed to be 
the case (Kilkenny et al., 2009). 
     Blind measurement, in which the researcher does not 
know which animals or samples received the experimental 
treatment, and which received the control treatment, is 
often preferable.  It may be especially important in studies 
in which subjective bias could interfere with accurate 
measurements.  However, even apparently ‘objective’ 

measurements can be influenced by observer bias (Lilford 
et al., 2003).  In human studies, ‘double blind’ designs are 
common, so that neither the subjects nor the 
experimenters are aware of who is assigned to the different 
experimental and control conditions. 
     Finally, replication is of paramount importance in 
experimental design.  It is entirely possible for patterns to 
be apparent in the data from small samples even if they 
are due to chance alone.  The idea that random 
occurrences are ‘balanced’ is known as the ‘Gambler’s 
Fallacy’ or the ‘Monte Carlo Fallacy.’  The importance of 
replication will be discussed below in relation to sample 
sizes and statistical power. 
     It is very important for a neuroscience researcher to be 
conscious of the kind of data he or she is collecting.  For 
example, is it data from a continuous variable (‘interval’ or 
‘ratio’ data), whose values are essentially uncountable and 
where probabilities can only be assigned on a continuum, 
or is it discrete data (‘nominal’ or ‘ordinal’ data) whose 
values are finite or countably infinite?  In the former case, 
the numbers assigned to data have complete mathematical 
integrity, for example, the amplitude of a neuronal 
excitatory post-synaptic potential.  Probabilities can only be 
assigned on a continuum for this sort of variable because, 
theoretically, no matter how small a change in it may be, a 
smaller one could be measured (provided that there is 
adequate measurement resolution). In this case, 
mathematically, 10 is literally twice 5.  By contrast, for a 
discrete variable such as ratings on a Hamilton Depression 
Rating Scale, only whole numbers can be used and 
although these numbers represent an order, i.e., 4 is 
greater than 2, it is not necessarily the case that 4 is twice 
2 in a mathematical sense, or at least it is difficult to prove 
this because it represents a subjective judgement.  
Neuroscientists tend to be preoccupied with the statistical 
analysis of continuous variables.  However, other kinds of 
data are important as well.  The frequency of adverse 
events in clinical trials of new neurologically important 
drugs is an important end point in determining whether a 
drug is safe.  However, even recent clinical trials of 
cannabinoid drug treatments for childhood epilepsy have 
included no formal statistical analysis of such data using 
the Chi Squared or Fisher’s Exact Test (e.g., Devinsky et 
al., 2017). 
     In neuroscience the terms ‘parametric’ and ‘non-
parametric’ are often used in relation to continuous and 
discrete variables, and variables that follow a normal or 
non-normal distribution, respectively.  However, this is an 
over-simplification.  ‘Parametric’ statistical procedures refer 
to those that assume that a random variable follows a 
known distribution, and although most statistical 
procedures used in neuroscience assume a normal 
distribution, it is possible to use parametric statistical tests 
that assume other kinds of distributions, for example, a 
Poisson distribution.  Non-parametric statistical tests refer 
to those that do not assume a known distribution, although 
they often do involve some assumptions as well.  In 
general, neuroscientists tend to consider non-parametric 
statistical tests, such as Mann-Whitney U tests and Kruskal 
Wallis tests, in cases where ordinal data such as ranks 
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have been collected, for example a rating scale for seizure 
severity.  Such data are often assumed not to follow a 
normal distribution, although this can depend on sample 
size.  If the data are demonstrated not to follow a normal 
distribution, an alternative to non-parametric statistical 
analysis is to use bootstrapping to determine the sampling 
distribution of the mean.   Since it is the normality of the 
sampling distribution of the mean that is actually important 
for GLM statistical procedures, by using resampling from 
the data for a particular sample size (e.g., n = 5), it is 
possible to determine whether the sampling distribution of 
the mean would be likely to be normal.  Sometimes even if 
the parent distribution appears to be non-normal, the 
sampling distribution of the mean may in fact be normal, 
which is all that is necessary. 
 

NON-NORMAL DISTRIBUTION OF DATA AND 
WHAT TO DO ABOUT IT 
All statistical procedures that are part of the GLM, such as 
Student’s t tests, ANOVAs and linear regression, make 
similar assumptions (Rutherford, 2001; Doncaster and 
Davey, 2007; Kirk, 2013): 

• The experimental subjects (e.g., animals) are sampled 
randomly from a population or from within groups. 

• The measurements within each sample are independent 
and have uncorrelated model errors. 

• The variances between the samples are approximately 
equal or ‘homogeneous.’ 

• The model errors are normally distributed (Rutherford, 
2001; Doncaster and Davey, 2007; Smith, 2012; Kirk, 
2013). 

     It is very common in neuroscience research to assume 
that the normality assumption for GLM Student’s t tests 
and ANOVAs is fulfilled without formally testing it using 
some form of goodness of fit test such as the Kolmogorov-
Smirnov, Shapiro-Wilk or Anderson-Darling tests 
(Rutherford, 2001; Gamst et al., 2008).  This is presumably 
due to the view that the central limit theorem will protect t 
tests and ANOVAs against the moderate violation of the 
assumption of normality “when samples sizes are 
reasonably large and are equal” (Winer et al., 1991, p.101).  
Unfortunately, the interpretation of “reasonably large” is 
problematic.  Snedecor and Cochran (1989) suggest that 
while for some populations the sampling distribution of the 
mean may be normal with sample sizes of 4 or 5, in other 
cases it may need to be more than 100.  The distributions 
of some variables are inherently non-normal.  For example, 
frequency data have positive integer values in which 
random variation increases as the mean increases 
(Doncaster and Davey, 2007).  On the other hand, Keppel 
and Wickens (2004) have argued that the normality 
assumption can be ignored once the sample sizes reach 
approximately 12 (see also, Rutherford, 2001).  However, 
the symmetry of the distribution is also very important 
(Winer et al., 1991; Kirk, 2013).   Obviously, if the normality 
assumption is not tested, then solutions to the violation of 
the normality assumption, such as natural log or square 
root data transformations, cannot be undertaken (Gamst et 
al., 2008; Fig. 1).   One issue is that, if the sample size is 
small, for example, less than or equal to 5, there may not 

be sufficient information in order to judge whether the data 
are normally distributed or not.  In this case, some 
researchers will choose to use a non-parametric statistical 
analysis, such as Mann-Whitney U tests (as an alternative 
to Student’s t tests) or Kruskal Wallis tests (as an 
alternative to a 1-way ANOVA).  However, this can be 
difficult for designs that are not amenable to one factor 
analyses, since most commercial programs do not offer 2-
way Kruskal Wallis tests as an alternative to 2-way 
ANOVAs (see Conover and Iman, 1981 for a review).  
What are the potential consequences of using ANOVA if 
the normality assumption is violated?  Rutherford (2001) 
suggests that it will affect both the type I error rate and the 
power of the ANOVA F test. 

 
A 

 
B 

 
 

Figure 1.  (A) Example of the non-normal distribution of glutamate 
receptor density in the rat hippocampus and (B) the effects of 
natural log transformation on that distribution.  It can be seen that 
the transformation substantially improves the normality of the 
distribution.  Modified from Zheng et al. (2013). 

 
UNEQUAL VARIANCES AND WHAT TO DO  
ABOUT THEM 
Another assumption of the GLM is that the variances 
associated with experimental error in the treatment 
populations to be compared, are approximately equal or 
‘homogeneous’ (the ‘homogeneity of variance’ or 
‘homoscedasticity’ assumption) (Winer et al., 1991).  Many 
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intervention studies in neuroscience are actually designed 
to reduce both the means and the variances of the 
dependent variable over time.  For example, in studies of 
the recovery from neurological deficits following a neural 
lesion, the objective of a drug treatment may be to both 
reduce the mean value of a neurological deficit as well its 
variance, so that all of the drug-treated group exhibit a 
similar recovery (e.g., Gilchrist et al., 1990).   An example 
of this is shown in Figure 2 but the principle applies to 
many rehabilitation studies.  Box (1954a; Box, 1954b) 
demonstrated that the ANOVA F test is robust against 
‘moderate’ violations of the homogeneity of variance 
assumption, provided that the sample sizes are equal.  
However, Box (1954a) showed that small changes in the 
ratio of the variances between treatment groups can alter 
the significance level of the F test, in some cases 
increasing the type I error rate.  Wilcox (1987) has 
suggested that when the homogeneity of variance 
assumption is violated, the conventional F test should 
never be used.  For this reason, some authors recommend 
using a more conservative type I error rate (Keppel and 
Wickens, 2004; Gamst et al., 2008).  Winer et al. (1991) 
suggest that the solution is for experimenters to aim to use 
large and equal sample sizes and then to use the Box 
approximation to the F test in situations where this is not 
possible.  The same data transformations that can be used 
to achieve normality of the data distribution, for example, 
natural log or square root transformations, often also result 
in homogeneity of variance (Winer et al., 1991; Gamst et 
al., 2008).  However, as with the normality assumption, 
many studies in neuroscience do not report testing the 
homogeneity of variance assumption using tests such as 
Levene’s or Bartlett’s tests, before proceeding with an 
ANOVA.  Such assumption tests are available in programs 
such as SPSS, SAS and Minitab, while other programs 
such as Prism provide the option of not making the 
assumptions or test the assumptions at the same time as 
conducting the statistical test.  Figure 3 shows an example 
of extremely unequal variances where analysis using 
ANOVA would have been invalid without transformation. 
 

CORRELATIONS OVER TIME OR SPACE AND 
WHAT TO DO ABOUT THEM FIXED VERSUS 
RANDOM EFFECTS 
In the formulations of the ANOVA, the GLM has the form: 
data = model + error.  Fixed effects involve only fixed 
levels of factors in the model, which are referred to as 
‘fixed’ because the experimenter has chosen them 
specifically as the factors of interest and any conclusions 
drawn from the analysis do not extend beyond them 
(Rutherford, 2001; Kirk, 2013). In the case of studies in 
neuroscience, one obvious example of a fixed effect is 
drug treatment, surgery, or electrical stimulation, where 
there may be 2 levels or values: treatment versus a sham 
intervention.  Animals are randomly allocated to each 
condition and the researcher has specifically chosen these 
conditions because of the nature of the research question.  
By contrast, random effects involve only random factors in 
the model, which are referred to as ‘random’ because they 
are believed to be only a random sample from a population 

 
Figure 2.  The compensation of spontaneous nystagmus (SN) for 
a saline control group and an ACTH-(4-10)-treated group 
following unilateral labyrinthectomy (UL).  Bars represent means 
± 1 SD.  Note that as the means decrease, so do the SDs.  
Reproduced from Gilchrist et al. (1990) with permission. 
 
 

 
Figure 3.  Levels of agmatine in the vestibular nuclei of aged (A) 
and young (Y) rats in enriched (Y) or non-enriched (N) 
environments.  Note the large difference in variability between the 
enriched and non-enriched groups.  Modified from Smith (2016). 

 
of experimental conditions.  Therefore, conclusions based 
on their investigation are extrapolated to a wider population 
of experimental conditions (Rutherford, 2001; Kirk, 2013).  
Common examples of random effects in the context of this 
area are the animals themselves, which are a random 
sample from a population of animals. 
     Since factorial repeated measures ANOVAs are so 
commonly used in neuroscience, it is common to have a 
‘mixed’ design which contains both fixed and random 
factors (Rutherford, 2001).  The fixed factor is often the 
treatment and the random factor, animals, over which 
several repeated measures are made.  A 2-factor factorial 
model is often used where the objective is to investigate 
the effects of 2 independent factors on the dependent 
variable, for example, drug and time (Small et al., 2011).  
Sometimes, if the change in the dependent variable over a 
period of time is of interest, and repeated measurements 
can be made in the same animals (i.e., one observation 
per animal per time point), a repeated measures design 
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with a single factor may be used.  One of the most 
commonly used designs is a factorial design including one 
fixed, between group, measure, for example drug, and one 
repeated measure, over time, a so-called ‘mixed’ or ‘split-
plot’ design (Festing, 2003). 
 

COMPOUND SYMMETRY OR SPHERICITY 
Another assumption of the ANOVA F test is that the 
variance-covariance matrices for the dependent variable 
are equal and symmetrical across the different treatment 
groups.  Known as the ‘compound symmetry’ assumption, 
it is a special case of ‘circularity’ (Winer et al., 1991).  
‘Sphericity’ is a less restrictive assumption, that the 
variances of the differences between the values of the 
dependent variable are approximately equal for all pairs of 
treatments (Quinn and Keough, 2002).  This means that 
the covariances for all pairs of treatments will be zero and 
the variances will be equal.  In violation of these 
assumptions, it is quite common in neuroscience studies 
for the data from individual subjects to be correlated over 
time or space (e.g., if samples are taken from different 
areas of the brain in each subject).  In these cases the 
variance for the dependent variable may change 
systematically with repeated measures over time or space, 
and correlate with specific changes in the means for the 
repeated measure.  One frequent example are recovery 
phenomena in which the average value for some 
neurological symptom is initially very high with a large 
variance, but as a recovery or compensation process takes 
place, the severity of the symptom decreases over time, 
but the variance systematically decreases as well (for an 
example, see Fig. 2).  The strength of the correlation 
between observations may decrease as the distance (in 
time or space) between the measurements increases.  
These correlative or covariance relationships across the 
repeated measures can be characterized using various 
models, for example, an autoregressive order 1 (AR(1)) 
covariance structure, in which the current value of the 
dependent variable is related to the immediately preceding 
value (Brammer, 2003).  It is possible to use mathematical 
transformations such as log and square root 
transformations to try to stabilize the variances (Quinn and 
Keough, 2002). 
     The systematic change in the variances of the repeated 
measure violates the assumption of sphericity, which can 
potentially inflate the type I error rate for an ANOVA (Winer 
et al., 1991).  Mauchly’s test of sphericity can be used to 
evaluate the degree to which the assumption is violated; 
however, its use has been criticised because it assumes 
that the data are normally distributed and its sensitivity is 
related to the sample size (Winer et al., 1991; Quinn and 
Keough, 2002).  Consequently, it is not recommended for 
routine use and Quinn and Keough (2002) suggest that it is 
safer to assume that the sphericity assumption is violated 
in repeated measures situations, which they usually are in 
neuroscience.  One solution to this problem is to employ 
some form of correction, such as the Greenhouse-Geisser 
or Huynh-Feldt corrections, which make the type I error 
rate for the F test more conservative and reduce the 
statistical power for the repeated measure (Winer et al., 

1991).  However, it is rare for neuroscience researchers to 
use such corrections. 
 

REPEATED MEASURES ANOVAS WITH 
UNBALANCED REPEATED MEASURES 
DESIGNS AND MISSING DATA 
Unequal sample sizes increase the effects of the violation 
of the assumptions of normality and homogeneity of 
variance (Box, 1954a; Box, 1954b; Winer et al., 1991).  
Nonetheless, GLM ANOVAs can accommodate unequal 
sample sizes for different treatments (Quinn and Keough, 
2002).  By contrast, missing data are problematic for 
repeated measures ANOVAs.  Missing data are common in 
neuroscience as a result of subjects dying or tissue 
deteriorating during an experiment or sometimes due to a 
measurement becoming technically impossible (Quinn and 
Keough, 2002).  In this case, because the sums of squares 
for the treatment (SST) have to be weighted in relation to 
the number of observations for the treatment, and the sum 
of squares for the error (SSE) have to be weighted in 
relation to the number of samples for the experimental 
subjects, no two mean squares can have equal expected 
values under the null hypothesis (Kuehl, 2000; Kirk, 2013).  
Consequently, the F test of the null hypothesis cannot be 
exact (Kuehl, 2000). 
     Many statistical programs (e.g., SPSS) which offer 
repeated measures ANOVAs delete experimental subjects 
if they have missing data (Gamst et al., 2008; Field, 2011).  
Many studies in neuroscience already have small and 
unequal sample sizes; therefore, simply deleting data in 
the case of missing values is difficult to accept (Clark et al., 
2012; Smith, 2012).  The reduction in sample size will be 
likely to result in lower statistical power.  It is also ethically 
objectionable to use of animals for research and then not 
include their data unless the data are technically flawed in 
some way (Smith, 2012).  Some form of imputation 
procedure may be employed in order to estimate the 
missing values (‘Missing Values Analysis or MVA’) (Quinn 
and Keough, 2002; Gamst et al., 2008).  A maximum 
likelihood (ML) and expectation-maximization (EM) 
approach (a combination of imputation and ML) can also 
be used (Quinn and Keough, 2002).  However, only some 
programs (e.g., SPSS) offer the EM algorithm and for the 
ML and EM methods to be used, the missing data must be 
‘missing at random’ (MAR, i.e., the probability that an 
observation is missing must not depend on the unobserved 
missing value but may depend on the group to which it 
would have belonged) or ‘missing completely at random’ 
(MCAR, i.e., the probability that an observation is missing 
must not depend on the observed or missing values) 
(Quinn and Keough, 2002; Smith, 2012).  In other words, 
there can be no bias to the way that data are missing, a 
condition that is sometimes difficult to satisfy. 
 

ALTERNATIVES TO REPEATED MEASURES 
ANOVAS:  LINEAR MIXED MODEL ANALYSIS 
(LMM) 
Since repeated measures data in neuroscience are usually 
correlated and therefore violate the ANOVA assumption of 
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sphericity, one alternative approach is to use a linear 
mixed model (LMM) analysis in which the correlation in the 
data is modelled.  Here the term ‘mixed’ refers to the fact 
that there is a mixture of ‘fixed’ and ‘random’ effects that 
have to be estimated (Gurka and Edwards, 2011).  The 
development of LMM analyses was stimulated by 
epidemiological and clinical trial studies in which 
longitudinal data are often collected.  In these cases, it is 
common for studies to have missing data.  LMM analysis 
can accommodate this problem and also has fewer 
assumptions than ANOVAs (see below) (Fitzmaurice et al., 
2004; Kutner et al., 2005; Vittinghoff et al., 2005; Brown 
and Prescott, 2006; West et al., 2007; Rao et al., 2011; 
Gurka and Edwards, 2011; Smith, 2012).  In LMM analysis, 
an iterative maximum likelihood estimation procedure (MLE 
or restricted maximum likelihood estimation (REML)) is 
used to estimate parameters.  This is an optimization 
procedure that uses calculus to choose as the parameter 
estimates, the values that result in the observed data 
having maximal probability (Miller and Miller, 2004; 
Fitzmaurice et al., 2004; West et al., 2007; Gurka and 
Edwards, 2011; Smith, 2012).  The process is repeated 
over and over until it converges on the optimal solution.  
MLEs of the parameters are biased, however REMLs are 
not (Fitzmaurice et al., 2004; Brown and Prescott, 2006; 
West et al., 2007).  Rather than the ANOVA approach of 
assuming that the repeated measures data are 
independent, or employing a correction procedure such as 
the Greenhouse-Geisser or Huynh-Feldt corrections if they 
are not, the correlational structure of the repeated 
measures data is modelled using various covariance matrix 
structures (14 are available in SPSS), for example: an 
unstructured covariance structure, autoregressive (AR, 
order 1) or autoregressive-moving average (ARMA) 
covariance structures (Little et al., 2000; Brammer et al., 
2003; Clark et al., 2012; Smith, 2012).  In SPSS, using an 
LMM analysis is not much different from performing an 
ordinary ANOVA, except that the best covariance matrix 
structure must be chosen.  Although this seems 
complicated and laborious at first, in practice it only 
involves determining the model which is the best fit, which 
can be done using various information criteria (see below).  
Once demonstrated, students learn this procedure very 
quickly. 
     Other than the statistical package R (Crawley, 2007; 
Field et al., 2012; Davies, 2016), which requires 
programming, there are other freely downloadable 
programs that offer the LMM analysis option.  For example, 
the InVivoStat program offers compound symmetry, AR1 
and unstructured covariance structures as options (Clark et 
al., 2012; Smith, 2012).  The default covariance structure in 
InVivoStat is compound symmetry, which means that all of 
the observations within subjects are correlated equally 
irrespective of their distance from each other.  The AR1 
structure is recommended for data with equally spaced 
time points and the unstructured covariance structure is for 
large sample sizes (Smith, 2012).  LMM analyses have 
been employed in neuroscience studies as an alternative 
to using repeated measures ANOVAs (e.g., Brammer, 
2003; Stiles et al., 2012; Zheng et al., 2012a,b; Zheng et 

al., 2014; Zheng et al., 2015).  For small sample sizes it 
may be difficult to evaluate the best covariance structure 
and the use of the unstructured covariance matrix structure 
may result in a loss of statistical power.  Modifications such 
as the Kenwood Rogers adjustment for small sample sizes 
have been proposed (Skene and Kenwood, 2010a) and a 
bias-adjusted empirical sandwich estimator and a modified 
Box correction for use with very small sample sizes have 
been investigated (Skene and Kenwood 2010a,b).  Skene 
and Kenwood (2010a,b) have reported that the modified 
Box correction has an acceptable level of power (Skene 
and Kenwood 2010a,b). 
     In order to choose the optimal covariance matrix 
structure model, the goodness-of-fit is usually evaluated 
using an information criterion such as the Akaike’s 
Information Criterion (AIC, which indicates how well the 
covariance matrix structure describes the data), where the 
smallest value is the best (Fitzmaurice et al., 2004; Brown 
and Prescott, 2006; West et al., 2007).  Other information 
criteria are available in programs such as SPSS, such as 
the Bayesian Information Criterion (BIC); however, some 
authors suggest that the BIC results in a higher probability 
of selecting a model that is too simple for the data because 
it employs greater penalties for models with a large number 
of parameters (e.g., Fitzmaurice et al., 2004; West et al., 
2007; Gurka and Edwards, 2011). 
     Once the optimal covariance matrix structure model is 
found, the interpretation of the LMM analysis is really as 
straightforward as an ANOVA.  For example, if there are 
two factors, the program output will display an F value for 
each one as well as for the interaction between the two, in 
addition to the usual degrees of freedom and p values.  
Post-hoc tests such as Bonferroni tests can be selected as 
they would for an ANOVA. 
     LMM analyses do not assume a balanced design, 
sphericity or homogeneity of variance; however, the 
sampling must still be random and the residuals (i.e., 
errors) normally distributed (Brown and Prescott, 2006).  
Compared to repeated measures ANOVAs, LMM analyses 
using a REML offer considerable advantages in situations 
in which there are multiple repeated measures and missing 
data, and we use them routinely (e.g., Zheng et al., 
2012a,b; Zheng et al., 2014; Zheng et al., 2015; Fig. 4).  It 
is convenient that LMM analyses are available not only in 
programs such as SPSS, SAS and R, but in the freely 
downloadable program, InVivoStat, which means that the 
option is available to everyone (Clark et al., 2012; Smith, 
2012).  Field has published books on the use of SPSS and 
R that are very easy to follow and include practical sections 
on LMM analyses with minimal mathematical detail (Field, 
2011; Field et al., 2012). 

 
MULTIPLE TESTING AND HOW TO AVOID IT 
Another perennial source of controversy in statistical 
analysis in neuroscience is the use of multiple testing, 
either using multiple Student’s t tests to examine every 
conceivable pairwise comparison or even the excessive 
use of multiple post-hoc tests following a significant 
ANOVA (Darlington, 2005).  For a single Student’s t test,  
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Figure 4.  Auditory brainstem response (ABR) thresholds for the 
ipsilateral (A) and contralateral (B) ears of sham-vehicle, sham-
acoustic trauma, exposed-no tinnitus-drug (delta-9-THC + 
cannabidiol) and exposed-tinnitus-drug animals pre-exposure, 
immediately post-exposure and 6 months post-exposure, as a 
function of stimulus intensity in dB SPL and frequency in kHz.  
Data are presented as means ± 1 SE.  The design includes 2 
between-group factors (i.e., drug and tinnitus) as well as 
frequency and time re exposure as repeated measures.  These 
data were analysed using a 4 factor or 4-way LMM analysis.  
Reproduced from Zheng et al. (2015) with permission. 
 

the type I error (α) rate is usually set at 5%.  However, if 
there are many treatment groups, there are (p(p-1))/(2) 
possible pairwise comparisons among p treatment means, 
e.g., for 3 groups, = (3(3-1))/(2) = 3 comparisons; for 6 
groups, = (6(6-1))/(2) = 15 comparisons (Darlington, 2005).  
Therefore, the risk of a type I error increases rapidly as the 
number of comparisons increases, i.e., the ‘experiment-
wise’ type I error rate is no longer 5%.  Although the 
increase in the type I error rate in relation to the number of 
comparisons is not simply linear, it increases with a steep 
curve and even for 7 comparisons, the actual type I error 
rate can be as high as 65% rather than 5%, which means 
that a false rejection of the null hypothesis can occur 65% 
of the time.  Post-hoc tests, such Bonferroni t tests, control 
the type I error rate for the entire experiment so that it is 
divided amongst the number of comparisons made 
(Keselman et al., 2005; Darlington, 2005).  Therefore, for 5 
comparisons the real type I error rate will be 1% per 
comparison.  This will reduce the power of each test and 
therefore may simply result in non-significant comparisons 
if too many are used.  This can result in a situation that 

often baffles undergraduate students, where an ANOVA is 
significant but none of the pairwise comparisons is.  Of 
course, the ANOVA and the post-hoc tests are asking 
different questions: the ANOVA is asking whether there is 
a significant difference amongst p means, whereas the 
post-hoc tests are asking whether there is a significant 
difference between any two means.  The other problem 
that arises with multiple post-hoc tests is that they may not 
be ‘orthogonal’ or mathematically independent of one 
another and this may yield apparently contradictory results.  
If A is compared with B, B with C, and A with C, the 
comparisons of A with B and A with C are not independent. 
     The solution to this problem is in the design of the 
experiments themselves, in the use of planned 
comparisons (Quinn and Keough, 2002; Ruxton and 
Beauchamp, 2008) as well as the careful use of tests such 
as ANOVAs and post-hoc comparisons (Festing, 2003).  
First, multi-level designs in which means representing 
different factors and factor levels are of interest are best 
analysed using ANOVAs or LMM-type procedures, so that 
the type I error rate is fixed at 5% initially.  If the design is a 
2 x 2 factorial design, with 2 levels in each factor, for 
example the effects of amphetamine or saline on dopamine 
levels in the brains of male and female rats (therefore, 
factor 1 = drug treatment with 2 levels, drug versus vehicle; 
factor 2 = sex, with 2 levels, male versus female), then 
post-hoc tests will be unnecessary, because the ANOVA 
main effect result for the drug will indicate whether there is 
an effect of amphetamine independently of sex, the main 
effect result for sex will indicate whether there is an effect 
of sex independently of amphetamine, and the ANOVA 
interaction term will indicate whether the effect of 
amphetamine varies as a function of sex.  This is a 
complete analysis and because there are only 2 levels of 
each factor, further post-hoc testing is unnecessary.  A 
critical part of this kind of analysis is the information that 
the interaction provides, which is an important advantage 
of multi-level designs and ANOVA-style analyses and yet 
interactions are often ignored or not used properly 
(Nieuwenhuis et al., 2011).  If post-hoc tests are necessary 
because there are more than two groups and specific 
information is needed about exactly where any pairwise 
differences lie, then as few tests as possible are best 
planned in advance or all comparisons performed using 
strict correction procedures.  Choosing the pairwise 
comparisons to be made based on inspection of the data 
alters the probability of a type I error in major ways.  
However, in many cases post-hoc tests are not necessary 
if the interaction terms are used properly (Festing, 2003).  
However, Cramer et al. (2016) have made the important 
point that the ‘multiplicity problem’ does exist in multiway 
ANOVAs as well, in that as more factors and interactions 
are included, the actual type I error rate increases.  In 
cases such as the effects of drug dose on a dependent 
variable, some form of non-linear regression analysis is 
often more appropriate than ANOVAs and multiple testing 
may not be necessary (Motulsky, 1995).  In one analysis 
this will indicate the pattern of change in the dependent 
variable as a function of dose, whether it is statistically 
significant, and perhaps, more importantly, how large the 
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effect is in terms of the coefficient of determination (i.e., the 
R2). 
 

SAMPLE SIZE, STATISTICAL POWER AND 
PSEUDOREPLICATION 
Perhaps no statistical topic has evoked more controversy 
in neuroscience in recent years than that of small sample 
sizes and under-powered studies.  Statistical power (‘1 – 
β‘) is the probability that a statistical test will detect a 
significant difference if one exists.  It is determined by a 
combination of the difference to be detected (i.e., ‘∆’), the 
type I error rate (‘α’, usually 5%), the variability around the 
mean estimates (i.e., the standard deviations) and the 
sample sizes (‘n’).  Since a difference of minimal interest 
may be fixed, the type I error rate is usually 5% (split 
between two tails), and a power of at least 80% is usually 
desired, the critical variables influencing power are usually 
variability and sample size (Eng, 2003; Norman et al., 
2012; see Fig. 5).  Beyond certain limits to do with 
experimental control, the variability may also be relatively 
fixed; therefore, only the sample size can be varied to 
increase power.  Many neuroscientists wish to minimize 
the number of animals being used in their experiments, 
both because of the financial costs involved in expensive 
studies and also for ethical reasons.  On the other hand, if 
the sample size is too small relative to the difference to be 
detected and the variability, then statistical power may be 
low, for example, 60%, which would mean that a significant 
difference would be missed 40% of the time. 
     Button et al. (2013) reported the results of 49 meta-
analyses of neuroscience studies in which the median 
power was only 21%.  The publication of this paper was 
followed by considerable debate about the circumstances 
in which small sample sizes can be justified (e.g., Quinlan, 
2013; Ashton, 2013; Bacchetti, 2013, and rebuttal by 
Button et al., 2013b), and the issues merge with that of 
pseudoreplication discussed below.  Smaldino and 
McElreath (2016) analysed the average power from 44 
papers published in the social and behavioural sciences 
between 1960 and 2011 and found that it was 24%, with no 
increase over that period of time despite consistent calls 
for increasing statistical power in such studies.  Dumas-
Mallet et al. (2017) performed a meta-analysis of studies 
investigating the impact of biological, environmental and 
cognitive variables on neurological and psychiatric 
disorders and reported that the median statistical power for 
all of the studies considered together (n = 660) was 
between 8.5% and 29.9%.  The studies of Alzheimer’s 
Disease had the lowest power of all (median = 8.5%) 
compared to the highest for major depressive disorder 
(median = 29.9%).  Studies of somatic disease were 
compared and did not have more favourable power 
distributions, with median power values between 10.7% 
and 19.6%. 
     A great deal has been written about the problem of ‘p 
hacking’ in science in general and the problem exists in 
neuroscience as well.  This term refers to a situation in 
which researchers intentionally collect data until they reach 
the point of statistical significance or select the statistical 
analyses that provide that result (Head et al., 2015).  This  

 

 
Figure 5.  The interdependence of type I error (), type II error (), 

variability (), the expected effect (∆) and the sample size (n) in 
the statistical analysis of a given study.  (a) The power of the two-
tailed Student test as a function of sample size per group for a 

given standardized difference (i.e., ∆/ = 1.5) and for  varying 

from 1% to 10% is shown.  When ∆,  and  (a false positive rate) 

are fixed, the power of the test (1 - ) can only be improved by 
increasing the sample size.  (b) The difference that could be 
detected using a two-tailed Student test as a function of the 

sample size per group for given risks and for  varying from 1 to 5 

is shown.  When ,  and  (a false negative rate) are fixed, the 
required sample size becomes larger as the value of ∆ 

decreases.  When ,  and ∆ are fixed, the estimated sample size 
is smaller as the variability decreases.  Reproduced from Groupe 
Biopharmacie et Sante de la Societe Francaise de Statistique 
(2002), with permission. 
 

results in the phenomenon of ‘publication bias,’ in which 

most of the published results in a field are actually false 
positive results (Head et al., 2015).  Ioannidis et al. have 
also pointed out that even low power studies can result in a 
high rate of studies reporting false positives (Ioannidis, 
2005; Ioannidis, 2015; see also Button et al., 2013a).  The 
belief that if a difference is significant at p ≤ 0.05 then the 
study must be adequately powered reflects a fundamental 
misconception of the nature of probability and statistical 
power (Button et al., 2013a). 
     The problem of adequate sample sizes in neuroscience 
research is a perennial one, especially where it concerns 
animal-based research.  Although sample size formulae 
can be used to determine the optimal n for a certain ∆, 
statistical power and variability, it can be very difficult to 
estimate these variables if a study is being conducted for 
the first time.  If estimates of ∆ and variability are not 
available from the published literature or the researcher’s 
previous studies, then simply guessing values can lead to 
very large sample sizes that are completely impractical 
(Bacchetti, 2013).  Therefore, it is best to conduct some 
form of pilot study in order to estimate the information 
necessary to obtain reliable sample size values.  
Nonetheless, many researchers do not want to conduct 
pilot studies because of the increase in expense. 

     Provided reliable estimates of ∆ and variability are 

available, the n can be estimated for a two sample 

Student’s t test by simple equations such as: 

n  = (2(z + z1-)22) / Δ2 

where z = the type I error rate for a 2-sided test 

(= 1.96), z1- = the desired power (e.g., 80% or 
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0.8),  = the estimate of the standard deviation 
(e.g., 0.7), and Δ = the effect size of interest 
(15% or 0.15). 

 
     However, the sample size calculations rapidly become 
more complex as the design becomes more complex.  
Some commercial programs such as Minitab offer sample 
size calculations for different kinds of designs, while many 
such as SPSS do not offer them in the core program.  
There are specialized programs for calculating power and 
sample sizes such as nQuery; however, these are more 
complicated and many researchers cannot afford them.  
There are, however, free basic sample size calculators 
available on the internet such as Russ Lenth’s: 
http://homepage.stat.uiowa.edu/~rlenth/Power/ (Lenth, 
2001).  Also, some introductory statistics books offer 
simple nomograms which allow sample sizes to be 
estimated visually (e.g., Pezzullo, 2013).  There is no 
simple solution to the problem of determining optimal 
sample sizes in neuroscience research.  Probably a major 
advance in addressing the problem is to be aware of it and 
concerned about the impact it can have on the results of 
the study.  Increasing sample size is not the only solution 
to the problem.  Because reducing variability increases 
statistical power, all other things being equal, planning to 
make measurements more precise by controlling sources 
of variability can be a very important step to increasing 
power (Cumming and Calin-Jageman, 2017). 
     The issue of sample size and statistical power is related 
to the problem of pseudo-replication in neuroscience 
(Lazic, 2010).  ‘Pseudoreplication’ is a situation in which 
the number of ‘experimental units’, which is what a 
statistical test uses as the sample size, is confused with 
the number of observations per experimental unit.  In these 
cases the sample size is inflated by confounding the 
relatively independent information, e.g., from different rats, 
with correlated information, e.g., from the same rat.  As a 
result, statistical power will be artificially inflated (Lazic, 
2010; see Fig. 6).  A simple example of this is the scenario 
in which several hippocampal slices are removed from a 
sample of different rats, but the sample size is regarded as 
the number of slices rather than the number of rats.  
Whereas the different rats represent relatively statistically 
independent sources of information, the slices from the 
same rat do not, and when these are combined the result 
is a confounding of independent and correlated 
information.  Worse still, if more slices are used from one 
rat than another, the total sample size will be biased 
towards certain individual rats, so that they will have a 
greater influence on the results.  This can be a particular 
problem in single neuron recording, where, due to the 
technical difficulty in obtaining viable recordings from single 
neurons either extracellularly, intracellularly or using patch 
clamping, different numbers of neurons may be added 
together from different animals and preparations, so, for 
example, 20 neurons might be recorded from one rat but 
only 5 from another, and the sample size is regarded as 25 
rather than 2 for the purposes of statistical analysis.  The 
problem becomes even greater in the context of alert 
recordings in animals such as monkeys, where it is very 

difficult to use more than 2 or 3, and therefore, the n is 
regarded as the total number of neurons from the group of 
animals, with the possibility that one monkey is 
represented more than the others in the data (Fiorillo, 
2010).  One solution to this problem is to avoid conflating 
the data from different animals with data from the same 
animals, by either analysing them separately or building 
the ‘animal’ factor into a hierarchical or multi-level analysis 
so that it is taken into consideration (Fiorillo, 2010; Aarts et 
al., 2014).  This relates to the fact that experiments that are 
better designed, by, for example, using nested split-split 
plot designs, can often provide greater statistical power 
with small sample sizes (Festing, 2003; Small et al., 2011; 
Aarts et al., 2014).  In fact, in a recent paper by Nord et al. 
(2017), they suggest that the distibution of statistical power 
across the neuroscience studies reviewed by Button et al. 
(2013a), is more complex than it first appears, and that it 
varies substantially across different areas of neuroscience 
and may be related to whether a null result was obtained.  
However, many statisticians regard post-hoc power 
calculations as flawed (e.g., Hoenig and Heisey, 2001). 

 
Figure 6.  An example of pseudo-replication.  Two rats are 

sampled from a population with a mean () of 50 and a standard 

deviation () of 10, and ten measurements of an arbitrary 
outcome variable are made on each rat.  The first (incorrect) 90% 
confidence interval (CI) uses all 20 data points and does not 
account for the hierarchical nature of the data.  For the second 
90% CI, the mean of the ten values for each rat is calculated first, 
and then only these two averaged values are used for the 
calculation of the CI.  The error bar on the left is incorrect 
because each of the 20 data points is not a random sample from 
the whole population, but rather samples within two rats.  This is 
evident from the fact that the 10 points are normally distributed 
around the mean of their respective rats, but not normally 
distributed around the population mean (horizontal grey line), as 
would be expected when independent samples are randomly 
drawn from a population.  Increasing the number of observations 

on each rat does not lead to a more precise estimate of , which 
requires more rats.  Note that the 90% CIs are plotted for clarity 
because the graph needs to be greatly compressed to display the 
95% CIs.  Reproduced from Lazic (2010) with permission.

http://homepage.stat.uiowa.edu/~rlenth/Power/
http://homepage.stat.uiowa.edu/~rlenth/Power/
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THE IMPORTANCE OF EFFECT SIZES 
One issue that concerns many neuroscientists, which is 
related to that of sample sizes and statistical power, is 
what some interpret to be an obsession with whether there 
is a significant difference, according to some arbitrary p = 
0.05 criterion, as opposed to the magnitude and scientific 
meaning of any difference (Button et al., 2013a; Quinlan, 
2013; Ashton, 2013; Bacchetti, 2013, and rebuttal by 
Button et al., 2013b).  Quite obviously the nature of sample 
size calculation formulae means that for a given variability, 
smaller and smaller mean differences can be detected as 
the sample size is increased.  However, the reliable 
detection of minute differences that have no scientific 
relevance is not in the interests of effective neuroscience 
research (Quinlan, 2013; Ashton, 2013; Bacchetti, 2013, 
and rebuttal by Button et al., 2013b).  In the context of the 
Neyman-Pearson approach to NHST, there needs to be an 
emphasis on effect sizes rather than simply significant 
differences, so that information about the likely impact of 
the difference is provided in order to interpret its meaning 
(Lew, 2012; Cumming, 2012; Szucs and Ioannidis, 2017b).  
In subjects such as psychology, the magnitude of effects is 
often reported by using measures such as Cohen’s d or 
Eta2 values (Cumming, 2012; Szucs and Ioannidis, 2017).  
Partly in response to this issue, Benjamin et al. (2017, in 
press) have recently suggested that the significance level 
be changed from 0.05 to 0.005 in order to reduce the 
number of false positive statistical tests.  Information about 
effects sizes is important beyond avoiding false positives, 
because they can be used in meta-analyses to contibute to 
the accumulation of evidence in a particular area 
(Borenstein et al., 2009).  Button et al. (2013a) has pointed 
out, however, that an over-estimation of effect sizes can be 
worse for small, low-powered studies, because they can 
only detect large differences.  This phenomenon has been 
referred to as the ‘winner’s curse’ (Button et al. (2013a). 
 

CONCLUDING REMARKS 
Statistical analysis is essential for effective neuroscience 
studies; however, in the last several years neuroscience 
has come under criticism for poor statistical analysis and 
design (e.g., Lazic, 2010; Kilkenny et al., 2009; 
Nieuwenhuis et al., 2011; Button et al., 2013; Curtis et al., 
2015).  Although many of the statistical issues that arise in 
neuroscience are similar to other areas of experimental 
biology, there are some that occur more regularly and this 
review has attempted to provide a guide to them.  The first 
step to effective design and statistical analysis should 
always be to determine the nature of the data (e.g., 
discrete versus continuous variables), plan random 
allocation of subjects to the treatment and control groups, 
to consider the need for blind measurement, and how 
much replication is necessary.  If parametric statistical 
tests are planned, then assumption tests should be run 
before using the intended analyses.  Attention should be 
paid to evidence that the data are not normally distributed 
and may violate the homogeneity of variance assumption 
and mathematical transformations that might address 
these issues should be considered (see Fig. 1).  An 
important consideration is whether the data will be likely to 

be correlated across time or space, i.e., repeated 
measurements over time or within animals or humans, and 
how this will impact on assumptions such as compound 
symmetry.  Here it is worth considering using LMM 
analyses rather than repeated measures ANOVAs, 
especially if there are likely to be missing data.  In 
programs such as SPSS and InVivoStat, running LMMs 
which model the correlation in repeated measures is not 
much more difficult than performing repeated measures 
ANOVAs. 
     It is essential that neuroscience studies are adequately 
powered to be capable of detecting differences of interest 
and, although it may not be easy, some effort to estimate 
effective sample sizes is necessary.  With available data 
from previous studies this can be done using basic sample 
size calculators available on the internet (e.g., Lenth, 2001) 
or using those offered in programs such as Minitab.  If such 
data are not available, it may be necessary to conduct a 
preliminary study in order to obtain that information.  The 
actual number of independent experimental subjects 
should be clearly identified in order to avoid pseudo-
replication (Lazic, 2010).  In this case good experimental 
design can help to control for the influence of individual 
experimental subjects, e.g., animals, and also increase 
statistical power while reducing the number of subjects 
required (Festing, 2003).  Finally, at least in the context of 
the Neyman-Pearson approach to NHST, attention needs 
to be shifted from mere significant differences to effect 
sizes as a way of gauging how meaningful the differences 
detected may be. 
     In the end, it is critical to view statistical analysis as 
another neuroscience tool, just like electron microscopy, 
immunohistochemistry or patch clamping, since it is critical 
to the end result of the study.  It is also a way of obtaining 
the most out of the data, the work put into obtaining it, and 
the resources that have been used in the process 
(especially animal life).  It is a good idea to be pro-active 
and ask for help early, preferably before the study even 
begins. 
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