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While neuroscience students typically learn about activity-
dependent plasticity early in their education, they often 
struggle to conceptually connect modification at the 
synaptic scale with network-level neuronal dynamics, not to 
mention with their own everyday experience of recalling a 
memory.  We have developed an interactive simulation 
program (based on the Hopfield model of auto-associative 
memory) that enables the user to visualize the connections 
generated by any pattern of neural activity, as well as to 
simulate the network dynamics resulting from such 

connectivity.  An accompanying set of student exercises 
introduces the concepts of pattern completion, pattern 
separation, and sparse versus distributed neural 
representations.  Results from a conceptual assessment 
administered before and after students worked through 
these exercises indicate that the simulation program is a 
useful pedagogical tool for illustrating fundamental 
concepts of computational models of memory. 
     Key words: memory, computational neuroscience, 
neural networks, Hebbian plasticity, Hopfield networks

 

 
 
Computational neuroscience has made many valuable 
contributions to our understanding of the brain 
(Trappenberg, 2009), with perhaps the most powerful 
being the elucidation of the biophysical mechanisms 
underpinning memory.  Donald Hebb’s notion that “neurons 
that fire together, wire together” (Hebb, 1949; Lowel, 1992) 
was shown to be a robust theoretical mechanism for 
memory storage by John Hopfield over thirty years ago 
(Hopfield, 1982).  While most neuroscience students are 
familiar with Hebb’s adage, it is often conceptually difficult 
to connect modification of individual synapses with the 
everyday experience of recalling a memory.  How exactly 
does the alteration of millions of synapses underpin our 
ability to recall what we ate for breakfast this morning?  
What is the neural correlate of remembering an event?  
And what happens on a synaptic level when we 
misremember an event?  Answering such questions from a 
computational perspective requires an abstract mapping 
between our common-sense notion of a “memory” and its 
associated “neural activation pattern.” 
     The family of computational models derived from this 
perspective is well described in the textbook Tutorial on 
Neural Systems Modeling (Anastasio, 2009), which has 
been used in a recently-described introductory course in 
computational neuroscience (Fink, 2016).  Anastasio’s 
treatment is mathematically approachable, using just 
algebra to explore computational models of memory.  It 
does, however, involve computer programming (programs 
are freely downloadable at http://sites.sinauer.com/ 
anastasio/, which pushes the exploration beyond the reach 
of many students in a typical Introduction to Neuroscience 
course. 
     We have therefore developed an interactive simulation 
program for students in introductory neuroscience courses 
to explore computational models of the three stages of 
episodic memory (encoding, storage, and retrieval).  We 
have also developed a series of in-class exercises 
(inspired by the Anastasio text) to guide student 

exploration.  These exercises focus on developing 
conceptual understanding by visualizing the connections 
formed between neurons in the network model, and they 
require neither programming experience nor mathematical 
analysis.  This simulation program therefore complements 
other paradigms for teaching about computational models 
of memory that involve pencil and paper calculations (Crisp 
et al., 2015). 
     To assess the impact of the simulation program and in-
class exercises on conceptual understanding of these 
models, a set of five conceptual questions was answered 
by students at Ohio Wesleyan University both before and 
after working through the exercises.  Results showed 
dramatic improvement in student understanding of pattern 
separation, pattern completion, and both Hebbian and 
Hopfield synaptic learning rules. 

 
MATERIALS AND METHODS 
Simulation Program: The simulation program and in-
classes exercises may be downloaded at 
http://chrisfink.xyz/teaching/teaching_resources.html. The 
download includes an executable file that may be run on 
64-bit Windows computers by simply double-clicking on 
memory_app.exe.  The simulation program may also be 

run on Linux or Mac operating systems, though it is not 
quite as straightforward.  The user must first have Python 3 
installed (including the tkinter, numpy, time, and 

random packages).  Then they may use the terminal to cd 

to the directory that contains the downloaded program and 
type python memory_app_source_code.py.  Either 

way, running the program opens the window shown in 
Figure 1. 

     There are three panes, one for each of the three stages 

of memory: encoding, storage, and retrieval.  In the 

Encoding pane, the user may define up to five “input 

patterns” by clicking on a square to represent the activation 

of a particular neuron (in this model, neurons are either  
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Figure 1.  Example window from the memory simulation program.  The three stages of episodic memory are represented in three 
different panes.  The user starts by defining up to five different neural activation patterns in the Encoding stage.  In the Storage stage, 
the user chooses either the “Hebbian” or “Hopfield” synaptic plasticity rule, which prescribes how neural activity influences the 
modification of neuronal connections.  In the Retrieval stage the user may test the accuracy of memory storage by starting with an input 
pattern similar to one of the five input patterns, then pressing the “Compute Output” button to observe how the network activ ity evolves 
over time, eventually reaching a steady state.  In the example above, Pattern #1 is successfully recalled, facilitated by the excitatory 
connection between neurons 1 and 10, as well as by the absence of connections between those two neurons and the rest of the 
network. 

 
fully active, i.e., spiking at their maximal rate, or completely 
silent).  Alternatively, rather than explicitly assigning each 
individual neural activation, the user may have the program 
generate a random pattern by specifying the number of 
neurons to activate and clicking the “Generate Random 
Pattern” button.  Either way, it should be emphasized to 
students that each input pattern encodes a response to an 
external stimulus, and these input patterns may be stored 
as memories and later recalled.  Storage is achieved by 
associating elements of patterns with one another by 
modifying neural connections (hence why this model of 
memory is termed “auto-associative”). 
     In the Storage pane, the user must first select which 
activity-dependent “learning rule” to apply.  The Hebbian 
learning rule applies Hebb’s adage, “neuron that fire 
together wire together,” with the understanding that only 
excitatory connections are possible.  In the example shown 
in Fig. 1, neurons 1 and 10 fire together in Pattern #1, so 
an excitatory connection forms between neurons 1 and 10.  
Neurons 4 and 14 fire together in Pattern #2, so an 
excitatory connection forms between neurons 4 and 14.  
And so on.  The more patterns there are in which two given 
neurons activate simultaneously, the stronger the 
excitatory connection between those two neurons 

becomes. 
     The other learning rule--known as the Hopfield learning 
rule, after its originator--is more complex.  Both excitatory 
and inhibitory connections are possible, and in general 
connections form between virtually all possible pairs of 
neurons.  This learning rule essentially specifies that 
“neurons that do the same thing have their connections 
become more excitatory, and neurons that do the opposite 
thing have their connections become more inhibitory.”  By 
“do the same thing” we mean that two neurons either both 
activate or both remain silent within an input pattern.  By 
“more excitatory” we mean that if an excitatory connection 
already exists between two neurons, and those neurons do 
the same thing on the next input pattern, then that 
connection grows stronger; but if an inhibitory connection 
exists between two neurons, and those neurons do the 
same thing on the next input pattern, then that connection 
grows weaker. 
     Pressing the “LEARN” button in the Storage pane will 
generate the connections due to all 20 neurons and from 
all five input patterns all at once.  Yet, this will often 
generate an overwhelming number of connections 
(especially for the Hopfield learning rule), thus obscuring 
the relationship between neural activity and neural 
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connectivity (which is one of the primary points of this 
simulation program).  For this reason, the user may 
generate connections either one pattern at a time, one cell 
at a time, or even one connection at a time, using the three 
buttons beneath the main “LEARN” button. 
     Once all connections have been generated, the user 
may move on to the Retrieval pane to test how accurately 
the input patterns have been stored.  The user may define 
any input pattern to start, though they will most likely be 
interested in starting with an input pattern very similar to 
one of the patterns defined in the Encoding pane 
(modeling, for example, an image similar but not identical 
to one “seen before”).  To do so they may press the “Use 
pattern” button, which will copy the input pattern specified 
in the dropdown menu.  The user may then alter this 
pattern by simply clicking on boxes.  To test whether a 
memory is correctly retrieved, the user then clicks the 
“Compute Output” button. 
     This runs a simulation which evolves network activity 
forward in time, according to the connections between 
neurons displayed in the Storage pane.  At a given point in 
time, the total input to a particular neuron is computed by 
adding up the connection strengths (which are positive for 
excitatory connections and negative for inhibitory 
connections) of all other activated neurons that connect to 
the neuron in question.  If the total input is greater than 0, 
then the neuron in question is activated; if less than 0, then 
the neuron is silent.  Intuitively, when the network receives 
an input “hint,” in the form of an incomplete pattern, the 
neurons that have positive connections will force each 
other to activate, and the neurons that have negative 
connections will force each other to inactivate, and these 
interactions will continue until none of the neurons can 
change their state.  At this point we say the network has 
reached “steady state.” If the steady state activation 
pattern matches one of the five patterns in the Encoding 
pane, then we say that particular memory has been 
retrieved. 
     The mathematical rules governing the evolution of 
network activity are intentionally hidden from the user so 
that they may instead focus on conceptual understanding: 
excitatory connections cause neural activity to spread, 
while inhibitory connections suppress spreading. 
 
In-class exercises: There are five in-class exercises that 
accompany the simulation program.  It is recommended 
that students work through these exercises in pairs, and 
that the instructor lead the class in discussing their 
responses to each exercise before moving on to the next 
one.  The exercises are as follows: 
 
(1) Simulating encoding, storage, and retrieval. Students 
are exposed to the idea of an abstract mapping between a 
particular sensory stimulus and a corresponding pattern of 
neural activation in the brain.  This is what is meant by 
“neural encoding.”  A simplistic but concrete example might 
be that each different input pattern in the Encoding pane is 
the neural response to a different image.  It is very 
important that students understand the concept of “neural 
encoding” before moving on to the remaining exercises. 

(2) Pattern completion. Students work through an exercise 
illustrating how the “neurons that fire together wire 
together” rule results in pattern completion, since a partial 
activation of one input pattern will spread to the inactivated 
neurons due to the excitatory connections that have 
formed between them.  Here the opportunity for students to 
actually see the network connections in the Storage pane 
is key to their making the conceptual connection between 
activity-dependent plasticity and memory retrieval. 
 
(3) Pattern separation. Students test the accuracy of 
memory retrieval when overlapping sets of neurons are 
activated in two different input patterns.  They find that 
when the Hebbian learning rule is used, memory retrieval 
fails, since the final pattern is a combination of the two 
input patterns. 
 
(4) Hopfield learning rule. The failure observed in the 
previous exercise motivates the use of a different learning 
rule—a rule that allows for the formation of inhibitory as 
well as excitatory connections.  Students first deduce the 
learning rule itself, then observe that the addition of 
inhibitory connections prevents the uncontrolled spread of 
neural activation, thus resulting in accurate memory 
retrieval.  At the end of this exercise, the instructor should 
tell students that the Hopfield learning has never actually 
been observed in the brain, while the Hebbian learning rule 
has…even though the exercise they just completed 
appeared to show the superiority of the Hopfield learning 
rule!  The final exercise resolves this conundrum. 
 
(5) Sparse versus distributed representations. Students 
explore the accuracy of memory retrieval for both learning 
rules under two different circumstances: 2 neurons 
activated per input pattern (a “sparse” representation), and 
10 neurons activated per input pattern (a “distributed” 
representation).  They find that the Hebbian learning rule is 
more accurate for sparse representations, while the 
Hopfield learning rule is more accurate for distributed 
representations. Students are informed that the 
hippocampus (the area of the brain modeled by these 
simulations) typically employs a sparse representation, 
thus explaining why the Hopfield learning rule is not 
utilized.  The instructor should help students brainstorm 
reasons that the brain might have evolved to prefer sparse 
representations to distributed representations. (Fewer 
activated neurons implies lower energy consumption.) 
 

RESULTS 
To assess student learning from the simulation program 
and in-class exercises, fourteen students in Ohio 
Wesleyan’s Introduction to Neuroscience course answered 
five multiple-choice conceptual questions both before and 
after working through the in-class exercises (see 
Supplementary Material). Students completed the 
questions anonymously, but used coded identifiers so that 
pre-post performance changes could be tracked.  The 
questions probed students’ understanding of pattern 
separation, pattern completion, neural connectivity 
generated by both the Hebbian and Hopfield learning rules, 
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and neural encoding.  Figure 2 shows that student scores 
increased significantly after working through the in-class 
exercises in conjunction with the memory app, suggesting 
enhanced conceptual understanding of core concepts 
related to computational models of memory. 
     Figure 3 shows the question-by-question breakdown of 
student performance.  Performance increased on all 
conceptual questions, with the largest gains observed on 
the questions related to pattern separation and pattern 
completion.  Performance on the question related to neural 
encoding increased only slightly, as students demonstrated 
a surprisingly good grasp of this concept even before 
working through the memory app. 
 

 
 

Figure 2.  Student assessment scores (out of 5) before and after 
working through exercises related to the memory app.  Dashed 
lines depict changes in scores for individual students, while solid 
line portrays the change in mean score (which increased from 
2.14 before the memory app to 4.14 afterward).  p-value 
calculated from paired-sample t-test.  Effect size calculated using 
Cohen’s d with pooled standard deviation.  N=14 students (some 
lines are on top of one another), and error bars indicate standard 
deviation. 

 
DISCUSSION 
Overall, these results suggest that the interactive 
simulation program described in this paper is a useful tool 
for teaching computational models of memory.  It is 
especially useful for developing facility with fundamental 
computational concepts, such as neural encoding, pattern 
completion, and pattern separation, without requiring 
students to perform any mathematical calculations.  This 
work therefore complements the pencil-and-paper neural 
network exercise developed by Crisp et al. (2015), as well 
as the pedagogical exercises developed by May (2010) 
which explore how neural networks are capable of 
implementing fundamental logical functions. 
     It is recommended that students work through the 
accompanying exercises in pairs, so that they can solve 
problems together.  In general, students seemed to enjoy 
the interactive nature of the simulation program, and it is 
important to give them an opportunity to ask their own 

questions and then freely explore the program to discover 
answers.  One of the strengths of the program is that it is a 
very general model of the three stages of memory, in 
principle allowing for exploration of many other questions 
and concepts. 
 

 
 

Figure 3.  Student performance on each question of the pre/post 
conceptual assessment.  Percentages reflect number of students 
answering each question correctly out of 14 total students in the 
class. 
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