
The Journal of Undergraduate Neuroscience Education (JUNE), Fall 2017, 16(1):A1-A5

JUNE is a publication of Faculty for Undergraduate Neuroscience (FUN) www.funjournal.org

ARTICLE
An Interactive Simulation Program for Exploring Computational Models of
Auto-Associative Memory

Christian G. Fink
Neuroscience Program and Physics Department, Ohio Wesleyan University, Delaware, OH 43015.

While neuroscience students typically learn about activity-
dependent plasticity early in their education, they often
struggle to conceptually connect modification at the
synaptic scale with network-level neuronal dynamics, not to
mention with their own everyday experience of recalling a
memory. We have developed an interactive simulation
program (based on the Hopfield model of auto-associative
memory) that enables the user to visualize the connections
generated by any pattern of neural activity, as well as to
simulate the network dynamics resulting from such

connectivity. An accompanying set of student exercises
introduces the concepts of pattern completion, pattern
separation, and sparse versus distributed neural
representations. Results from a conceptual assessment
administered before and after students worked through
these exercises indicate that the simulation program is a
useful pedagogical tool for illustrating fundamental
concepts of computational models of memory.
 Key words: memory, computational neuroscience,
neural networks, Hebbian plasticity, Hopfield networks

Computational neuroscience has made many valuable
contributions to our understanding of the brain
(Trappenberg, 2009), with perhaps the most powerful
being the elucidation of the biophysical mechanisms
underpinning memory. Donald Hebb’s notion that “neurons
that fire together, wire together” (Hebb, 1949; Lowel, 1992)
was shown to be a robust theoretical mechanism for
memory storage by John Hopfield over thirty years ago
(Hopfield, 1982). While most neuroscience students are
familiar with Hebb’s adage, it is often conceptually difficult
to connect modification of individual synapses with the
everyday experience of recalling a memory. How exactly
does the alteration of millions of synapses underpin our
ability to recall what we ate for breakfast this morning?
What is the neural correlate of remembering an event?
And what happens on a synaptic level when we
misremember an event? Answering such questions from a
computational perspective requires an abstract mapping
between our common-sense notion of a “memory” and its
associated “neural activation pattern.”
 The family of computational models derived from this
perspective is well described in the textbook Tutorial on
Neural Systems Modeling (Anastasio, 2009), which has
been used in a recently-described introductory course in
computational neuroscience (Fink, 2016). Anastasio’s
treatment is mathematically approachable, using just
algebra to explore computational models of memory. It
does, however, involve computer programming (programs
are freely downloadable at http://sites.sinauer.com/
anastasio/, which pushes the exploration beyond the reach
of many students in a typical Introduction to Neuroscience
course.
 We have therefore developed an interactive simulation
program for students in introductory neuroscience courses
to explore computational models of the three stages of
episodic memory (encoding, storage, and retrieval). We
have also developed a series of in-class exercises
(inspired by the Anastasio text) to guide student

exploration. These exercises focus on developing
conceptual understanding by visualizing the connections
formed between neurons in the network model, and they
require neither programming experience nor mathematical
analysis. This simulation program therefore complements
other paradigms for teaching about computational models
of memory that involve pencil and paper calculations (Crisp
et al., 2015).
 To assess the impact of the simulation program and in-
class exercises on conceptual understanding of these
models, a set of five conceptual questions was answered
by students at Ohio Wesleyan University both before and
after working through the exercises. Results showed
dramatic improvement in student understanding of pattern
separation, pattern completion, and both Hebbian and
Hopfield synaptic learning rules.

MATERIALS AND METHODS
Simulation Program: The simulation program and in-
classes exercises may be downloaded at
http://chrisfink.xyz/teaching/teaching_resources.html. The
download includes an executable file that may be run on
64-bit Windows computers by simply double-clicking on
memory_app.exe. The simulation program may also be

run on Linux or Mac operating systems, though it is not
quite as straightforward. The user must first have Python 3
installed (including the tkinter, numpy, time, and

random packages). Then they may use the terminal to cd

to the directory that contains the downloaded program and
type python memory_app_source_code.py. Either

way, running the program opens the window shown in
Figure 1.

 There are three panes, one for each of the three stages

of memory: encoding, storage, and retrieval. In the

Encoding pane, the user may define up to five “input

patterns” by clicking on a square to represent the activation

of a particular neuron (in this model, neurons are either

http://sites.sinauer.com/%0banastasio/
http://sites.sinauer.com/%0banastasio/
http://chrisfink.xyz/teaching/teaching_resources.html

Fink Computational Models of Memory A2

Figure 1. Example window from the memory simulation program. The three stages of episodic memory are represented in three
different panes. The user starts by defining up to five different neural activation patterns in the Encoding stage. In the Storage stage,
the user chooses either the “Hebbian” or “Hopfield” synaptic plasticity rule, which prescribes how neural activity influences the
modification of neuronal connections. In the Retrieval stage the user may test the accuracy of memory storage by starting with an input
pattern similar to one of the five input patterns, then pressing the “Compute Output” button to observe how the network activity evolves
over time, eventually reaching a steady state. In the example above, Pattern #1 is successfully recalled, facilitated by the excitatory
connection between neurons 1 and 10, as well as by the absence of connections between those two neurons and the rest of the
network.

fully active, i.e., spiking at their maximal rate, or completely
silent). Alternatively, rather than explicitly assigning each
individual neural activation, the user may have the program
generate a random pattern by specifying the number of
neurons to activate and clicking the “Generate Random
Pattern” button. Either way, it should be emphasized to
students that each input pattern encodes a response to an
external stimulus, and these input patterns may be stored
as memories and later recalled. Storage is achieved by
associating elements of patterns with one another by
modifying neural connections (hence why this model of
memory is termed “auto-associative”).
 In the Storage pane, the user must first select which
activity-dependent “learning rule” to apply. The Hebbian
learning rule applies Hebb’s adage, “neuron that fire
together wire together,” with the understanding that only
excitatory connections are possible. In the example shown
in Fig. 1, neurons 1 and 10 fire together in Pattern #1, so
an excitatory connection forms between neurons 1 and 10.
Neurons 4 and 14 fire together in Pattern #2, so an
excitatory connection forms between neurons 4 and 14.
And so on. The more patterns there are in which two given
neurons activate simultaneously, the stronger the
excitatory connection between those two neurons

becomes.
 The other learning rule--known as the Hopfield learning
rule, after its originator--is more complex. Both excitatory
and inhibitory connections are possible, and in general
connections form between virtually all possible pairs of
neurons. This learning rule essentially specifies that
“neurons that do the same thing have their connections
become more excitatory, and neurons that do the opposite
thing have their connections become more inhibitory.” By
“do the same thing” we mean that two neurons either both
activate or both remain silent within an input pattern. By
“more excitatory” we mean that if an excitatory connection
already exists between two neurons, and those neurons do
the same thing on the next input pattern, then that
connection grows stronger; but if an inhibitory connection
exists between two neurons, and those neurons do the
same thing on the next input pattern, then that connection
grows weaker.
 Pressing the “LEARN” button in the Storage pane will
generate the connections due to all 20 neurons and from
all five input patterns all at once. Yet, this will often
generate an overwhelming number of connections
(especially for the Hopfield learning rule), thus obscuring
the relationship between neural activity and neural

The Journal of Undergraduate Neuroscience Education (JUNE), Fall 2017, 16(1):A1-A5 A3

connectivity (which is one of the primary points of this
simulation program). For this reason, the user may
generate connections either one pattern at a time, one cell
at a time, or even one connection at a time, using the three
buttons beneath the main “LEARN” button.
 Once all connections have been generated, the user
may move on to the Retrieval pane to test how accurately
the input patterns have been stored. The user may define
any input pattern to start, though they will most likely be
interested in starting with an input pattern very similar to
one of the patterns defined in the Encoding pane
(modeling, for example, an image similar but not identical
to one “seen before”). To do so they may press the “Use
pattern” button, which will copy the input pattern specified
in the dropdown menu. The user may then alter this
pattern by simply clicking on boxes. To test whether a
memory is correctly retrieved, the user then clicks the
“Compute Output” button.
 This runs a simulation which evolves network activity
forward in time, according to the connections between
neurons displayed in the Storage pane. At a given point in
time, the total input to a particular neuron is computed by
adding up the connection strengths (which are positive for
excitatory connections and negative for inhibitory
connections) of all other activated neurons that connect to
the neuron in question. If the total input is greater than 0,
then the neuron in question is activated; if less than 0, then
the neuron is silent. Intuitively, when the network receives
an input “hint,” in the form of an incomplete pattern, the
neurons that have positive connections will force each
other to activate, and the neurons that have negative
connections will force each other to inactivate, and these
interactions will continue until none of the neurons can
change their state. At this point we say the network has
reached “steady state.” If the steady state activation
pattern matches one of the five patterns in the Encoding
pane, then we say that particular memory has been
retrieved.
 The mathematical rules governing the evolution of
network activity are intentionally hidden from the user so
that they may instead focus on conceptual understanding:
excitatory connections cause neural activity to spread,
while inhibitory connections suppress spreading.

In-class exercises: There are five in-class exercises that
accompany the simulation program. It is recommended
that students work through these exercises in pairs, and
that the instructor lead the class in discussing their
responses to each exercise before moving on to the next
one. The exercises are as follows:

(1) Simulating encoding, storage, and retrieval. Students
are exposed to the idea of an abstract mapping between a
particular sensory stimulus and a corresponding pattern of
neural activation in the brain. This is what is meant by
“neural encoding.” A simplistic but concrete example might
be that each different input pattern in the Encoding pane is
the neural response to a different image. It is very
important that students understand the concept of “neural
encoding” before moving on to the remaining exercises.

(2) Pattern completion. Students work through an exercise
illustrating how the “neurons that fire together wire
together” rule results in pattern completion, since a partial
activation of one input pattern will spread to the inactivated
neurons due to the excitatory connections that have
formed between them. Here the opportunity for students to
actually see the network connections in the Storage pane
is key to their making the conceptual connection between
activity-dependent plasticity and memory retrieval.

(3) Pattern separation. Students test the accuracy of
memory retrieval when overlapping sets of neurons are
activated in two different input patterns. They find that
when the Hebbian learning rule is used, memory retrieval
fails, since the final pattern is a combination of the two
input patterns.

(4) Hopfield learning rule. The failure observed in the
previous exercise motivates the use of a different learning
rule—a rule that allows for the formation of inhibitory as
well as excitatory connections. Students first deduce the
learning rule itself, then observe that the addition of
inhibitory connections prevents the uncontrolled spread of
neural activation, thus resulting in accurate memory
retrieval. At the end of this exercise, the instructor should
tell students that the Hopfield learning has never actually
been observed in the brain, while the Hebbian learning rule
has…even though the exercise they just completed
appeared to show the superiority of the Hopfield learning
rule! The final exercise resolves this conundrum.

(5) Sparse versus distributed representations. Students
explore the accuracy of memory retrieval for both learning
rules under two different circumstances: 2 neurons
activated per input pattern (a “sparse” representation), and
10 neurons activated per input pattern (a “distributed”
representation). They find that the Hebbian learning rule is
more accurate for sparse representations, while the
Hopfield learning rule is more accurate for distributed
representations. Students are informed that the
hippocampus (the area of the brain modeled by these
simulations) typically employs a sparse representation,
thus explaining why the Hopfield learning rule is not
utilized. The instructor should help students brainstorm
reasons that the brain might have evolved to prefer sparse
representations to distributed representations. (Fewer
activated neurons implies lower energy consumption.)

RESULTS
To assess student learning from the simulation program
and in-class exercises, fourteen students in Ohio
Wesleyan’s Introduction to Neuroscience course answered
five multiple-choice conceptual questions both before and
after working through the in-class exercises (see
Supplementary Material). Students completed the
questions anonymously, but used coded identifiers so that
pre-post performance changes could be tracked. The
questions probed students’ understanding of pattern
separation, pattern completion, neural connectivity
generated by both the Hebbian and Hopfield learning rules,

Fink Computational Models of Memory A4

and neural encoding. Figure 2 shows that student scores
increased significantly after working through the in-class
exercises in conjunction with the memory app, suggesting
enhanced conceptual understanding of core concepts
related to computational models of memory.
 Figure 3 shows the question-by-question breakdown of
student performance. Performance increased on all
conceptual questions, with the largest gains observed on
the questions related to pattern separation and pattern
completion. Performance on the question related to neural
encoding increased only slightly, as students demonstrated
a surprisingly good grasp of this concept even before
working through the memory app.

Figure 2. Student assessment scores (out of 5) before and after
working through exercises related to the memory app. Dashed
lines depict changes in scores for individual students, while solid
line portrays the change in mean score (which increased from
2.14 before the memory app to 4.14 afterward). p-value
calculated from paired-sample t-test. Effect size calculated using
Cohen’s d with pooled standard deviation. N=14 students (some
lines are on top of one another), and error bars indicate standard
deviation.

DISCUSSION
Overall, these results suggest that the interactive
simulation program described in this paper is a useful tool
for teaching computational models of memory. It is
especially useful for developing facility with fundamental
computational concepts, such as neural encoding, pattern
completion, and pattern separation, without requiring
students to perform any mathematical calculations. This
work therefore complements the pencil-and-paper neural
network exercise developed by Crisp et al. (2015), as well
as the pedagogical exercises developed by May (2010)
which explore how neural networks are capable of
implementing fundamental logical functions.
 It is recommended that students work through the
accompanying exercises in pairs, so that they can solve
problems together. In general, students seemed to enjoy
the interactive nature of the simulation program, and it is
important to give them an opportunity to ask their own

questions and then freely explore the program to discover
answers. One of the strengths of the program is that it is a
very general model of the three stages of memory, in
principle allowing for exploration of many other questions
and concepts.

Figure 3. Student performance on each question of the pre/post
conceptual assessment. Percentages reflect number of students
answering each question correctly out of 14 total students in the
class.

ACKNOWLEDGEMENTS
Much thanks to Tom Anastasio for his helpful comments on
both the paper and the simulation program.

REFERENCES

Anastasio TJ (2009) Tutorial on neural systems modeling.
Sinauer Associates, Incorporated.

Crisp KM, Sutter EN, Westerberg JA (2015) Pencil-and-paper
neural networks: an undergraduate laboratory exercise in
computational neuroscience. J Undergrad Neurosci Edu
14:A13-A22.

Fink CG (2016) An algebra-based introductory computational
neuroscience course with lab. J Undergrad Neurosci Edu
15:A117-A221.

Hebb DO (1949) The organization of behavior: a
neuropsychological theory. New York, New York: Wiley & Sons.

Hopfield JJ (1982) Neural networks and physical systems with
emergent collective computational abilities. PNAS 79:2554-
2558.

Lowel S, Singer W (1992) Selection of intrinsic horizontal
connections in the visual cortex by correlated neuronal activity.
Science 255:209.

May CJ (2010) Demonstrations of neural network computations
involving students. J Undergrad Neurosci Edu 8:A116-A121.

Trappenberg T (2009) Fundamentals of computational
neuroscience. Oxford, England: Oxford University Press

Received February 28, 2017; revised April 26, 2017; accepted May 05,
2017.

This work was supported by NIH Grant No. R01-NS094399.

The Journal of Undergraduate Neuroscience Education (JUNE), Fall 2017, 16(1):A1-A5 A5

Address correspondence to: Dr. Christian G. Fink, 61 S. Sandusky St.,
Ohio Wesleyan University, Delaware, OH 43015. Email: cgfink@owu.edu

Copyright © 2017 Faculty for Undergraduate Neuroscience

www.funjournal.org

