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An Algebra-Based Introductory Computational Neuroscience Course with Lab 
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A course in computational neuroscience has been 
developed at Ohio Wesleyan University which requires no 
previous experience with calculus or computer 
programming, and which exposes students to theoretical 
models of neural information processing and techniques for 
analyzing neural data.  The exploration of theoretical 
models of neural processes is conducted in the classroom 
portion of the course, while data analysis techniques are 
covered in lab.  Students learn to program in MATLAB and 

are offered the opportunity to conclude the course with a 
final project in which they explore a topic of their choice 
within computational neuroscience.  Results from a 
questionnaire administered at the beginning and end of the 
course indicate significant gains in student facility with core 
concepts in computational neuroscience, as well as with 
analysis techniques applied to neural data. 
     Key words: computational neuroscience, neural  
modeling, computer programming, MATLAB 
 

 
 
Computational neuroscience (CN) is a fast-growing field.  
The U.S. BRAIN Initiative represents one example of the 
need to analyze vast troves of neural data and distill the 
results to theoretical models of how the brain processes 
information (Insel et al., 2013).  While many courses in 
computational neuroscience have been developed 
previously, most (if not all) require multiple prerequisite 
classes in calculus and computer programming (Dayan 
and Abbott, 2001; Trappenberg, 2009; Érdi, 2015), which 
many traditional neuroscience majors do not take.  
Furthermore, such courses typically focus on theoretical 
models of how neural systems compute, but do not 
address methods of analyzing neural data. 
     The Computational Neuroscience course at Ohio 
Wesleyan was developed to meet these needs.  Students 
with no prior experience in calculus or programming learn 
to code in MATLAB and apply this skill to simulate neural 
processes (using finite difference equations, rather than 
differential equations) and to analyze real-world neural 
data.  While the lack of technical prerequisites necessarily 
limits the pace compared to other courses in CN, this CN 
course provides traditional neuroscience students the 
opportunity to learn the language and mode of thinking of 
CN, thus enriching their understanding of neural systems 
while developing general data analysis skills that are 
applicable in any laboratory setting. 
 

LEARNING OBJECTIVES 
Upon successful completion of this course, students will be 
able to: 
1) explain the fundamental principles of information 

processing by neural systems (as they are currently 
understood). 

2) model simple neural systems by writing simulation code 
in MATLAB. 

 analyze various forms of neural data using fundamental 

computer programming techniques.

 
COURSE RESOURCES 
The course requires three primary resources for students: 

the textbooks A Tutorial in Neural Systems Modeling (by 
Thomas J. Anastasio) and MATLAB for Neuroscientists: An 
Introduction to Scientific Computing in MATLAB (by Pascal 
Wallisch and Michael Lusignan), as well as a computer 
with access to MATLAB for every student in the course.  
Students may also purchase their own discounted 
MATLAB student license at http://www.mathworks.com 
/academia/student_version/.  Instructors may access 
course materials developed by the author at 

http://chrisfink.xyz/teaching/teaching_resources.html. 

 
COURSE DESIGN 
 

Prerequisites and intended audience 
This course is intended for junior- and senior-level 
neuroscience majors, and is specifically intended to 
develop breadth of knowledge and skills for majors whose 
concentration is behavioral, cognitive, or cellular/molecular 
neuroscience.  (Students majoring in Ohio Wesleyan’s 
separate Computational Neuroscience major take a 
different course, in theoretical neuroscience.)  Course 
prerequisites at Ohio Wesleyan are Introduction to 
Neuroscience and a low-level statistics course (to ensure 
some quantitative competency).  Optimal class size is eight 
to ten students.  Any more than this, and it becomes 
difficult for the instructor to keep up with students’ 
questions as they work through in-class and lab exercises.  
Class size could easily be expanded, however, with the 
addition of a TA to help answer questions. 
 

Structure 
The two fundamental aspects of the course are separated 
between the classroom (meeting for 50 minutes three 
times per week) and lab (meeting once for three hours 
every week), with the classroom portion exploring neural 
models through simulation and the lab portion covering 
data analysis techniques.  Students are expected to 
dedicate 8-10 hours to the course per week outside of 
class time.  Because no previous programming experience 
is assumed, the first three weeks of both the classroom 

http://www.mathworks.com/academia/student_version/
http://www.mathworks.com/academia/student_version/
http://chrisfink.xyz/teaching/teaching_resources.html
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and lab are spent building competence in fundamental 
programming skills (for loops, if statements, relational 
operators, functions, etc.), motivating these topics with as 
many examples from neuroscience as possible.  MATLAB 
is used as the programming language due to its relatively 
shallow learning curve, its widespread use, and the fact 
that both textbooks offer many simulation and analysis 
examples written in MATLAB. 
 

Classroom 
In the classroom portion of the course students use 
MATLAB to simulate neuronal networks as they explore 
topics including stimulus encoding and neural decoding, 
central pattern generators, auto-associative memory, 
tonotopic map formation, and information theory (all 
following the Anastasio text—see Table 1 for more detail).  
A typical class begins with a 10-15 minute lecture framing 
the topic and introducing a relevant computational model, 
followed by 35-40 minutes of students exploring the topic 
for themselves by actually running simulation code.  (It is 
therefore essential that each student have their own 
computer in the classroom.)  In most cases students do not 
write their programs from scratch, but start with a MATLAB 
program provided by the Anastasio textbook. 
 

Week Topics 

1 Overview of computational neuroscience; basic 
computations and plotting in MATLAB 

2 ‘for’ loops and simulating random spiking in neurons 

3 Relational operators, writing functions 

4 Rate coding, population coding, constructing tuning 
curves 

5 Gill-withdrawal reflex in Aplysia, positive feedback 

and leaky integration 

6 Vestibulo-ocular reflex, velocity storage, central 
pattern generators 

7 Lateral inhibition and edge detection, activity 
bubbles 

8 Review and mid-term exam 

9 Mid-semester break 

10 Neuronal synchronization, epilepsy, Parkinson’s 
disease, network theory 

11 Auto-associative memory, Hopfield networks 

12 Hippocampus and anterograde amnesia, distributed 
versus sparse representations 

13 Kohonen algorithm, brain maps 

14 Orientation selectivity in the visual cortex, intro to 
information theory 

15 Information transmission in neural networks, 
relationship of information theory to brain maps 

Table 1.  Overview of topics covered in the classroom portion of 
the course. 

 
For example, the introduction to auto-associative memory 
models starts with a short lecture on Donald Hebb’s 
hypothesis that “neurons that fire together wire together,” 
followed by several examples to illustrate the concepts 
pattern completion and pattern separation.  Students then 
run a simulation exploring how different patterns of neural 
activity alter the connectivity between neurons according to 
Hebb’s hypothesis, then use the resulting network 
connectivity (represented as a matrix) in another simulation 

to explore pattern completion and pattern separation.  
Students individually complete a worksheet guiding them 
through the exploration at their own pace (though they are 
encouraged to collaborate), while the instructor answers 
questions as they arise. 
 

Lab 
In laboratory students work individually to write code to 
process real-world data.  Examples include constructing a 
plot of firing rate versus time from a raw voltage trace 
recorded from the Backyard Brains cockroach preparation 
(Dagda et al., 2013), constructing a tuning curve from raw 
data recorded from the macaque motor cortex (data 
accessed from the Matlab for Neuroscientists text), and 
generating a movie from raw calcium fluorescence data 
recorded from a neuronal culture (see Table 2 for more 
details on topics covered in lab).  At the beginning of the 
semester, to keep students within their zone of proximal 
development (Chaiklin, 2003), they are provided with a 
“scaffold” of code to start each lab, with blank lines which 
they must complete in order to get the program to run 
successfully. 
 

Week Topics 

1 Intro to MATLAB, Part 1 (Chapter 2, Matlab for 
Neuroscientists): Basic functions and computations 

2 Intro to MATLAB, Part 2 (Chapter 2, Matlab for 
Neuroscientists): Plotting 

3 Intro to MATLAB, Part 3 (Chapter 2, Matlab for 
Neuroscientists): Functions and ‘while’ loops 

4 Rate coding cockroach lab: Use data obtained from 
Backyard Brains SpikerBox to plot firing rate versus 
time 

5 Neural encoding (Chapter 13, MfN): Construct tuning 
curves of neurons from macaque motor cortex 

6 Integrate-and-fire neuron model 

7 Practice lab exam 

8 Lab Exam 

9 Mid-semester break 

10 Fourier analysis I: Analyze signals to determine 
dominant frequency components 

11 Fourier analysis II: Plot frequency of signal versus 
time in order to identify epileptic seizure 

12 Image processing: Analyze calcium fluorescence data 
from neuronal culture 

13 Dialog boxes: User identifies whether or not a 
fluorescence trace includes neural activity 

14 De-noising signals: Use moving average and moving 
median techniques to remove noise from fluorescence 
signals 

15 Final Lab Exam 

Table 2.  Overview of topics covered in the lab portion of the 
course. 

 
     The following is an example of such scaffolded code, 
taken from the cockroach lab mentioned above: 
 
%% Section 1: Import and plot the data 

  
%read in voltage trace from cockroach 

experiment 
[voltage, srate]= ??? ; 
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%create a 'time' array, for which time(ii) 

corresponds to voltage(ii) 
time= ??? ; 

  
%plot the voltage as a function of time 
plot(time,voltage) 
xlabel('Time (sec)','fontsize',18)  
ylabel('Voltage (arbitrary 

units)','fontsize',18)  

  
%% Section 2: process the waveform so that 

you have a signal of just 1's and 0's: 1's 

for spikes and 0's for everything else 

  
%set threshold to separate spike events 

from noise; this is somewhat arbitrary 
threshold= ??? ;  

  
%make a copy of ‘voltage’ 
spikes=voltage; 
%set every entry in 'spikes' which is less 

than 'threshold' equal to 0 
spikes( ??? )=0; 

  
%in order to convert each spike into a 

SINGLE 1 (rather than multiple 1's), take 

the discrete difference of 'spikes' 
spikes=diff(spikes); 
spikes=[spikes; 0]; % add one extra entry 

to 'spikes,' so that it has the same number 

of elements as 'time'  

  
%set every entry in 'spikes' that is less 

than 'threshold' equal to 0 
spikes( ??? )=0; 
%set every entry in 'spikes' that is 

greater than or equal to 'threshold' equal 

to 1 
spikes( ??? )=1; 

 
figure 
plot(time,spikes) 
xlabel('Time (sec)') 
ylim([0 1.1]) 

 
As the semester goes on these code scaffolds become 
sparser, until in the last lab students write the program 
entirely from scratch. 

     Table 2 lists the topics covered in lab throughout the 

semester.  Topics in the first half of the course were 

selected with the goal of developing coding competency 

using neuroscience-motivated examples.  Topics in the 

second half of the course focus on imparting the skills most 

universally relevant to analyzing neural signals in a 

graduate lab.  Students with a fundamental understanding 

of Fourier analysis, facility with image processing 

techniques, and the ability to write a program in which the 

user interacts with the data should be capable of 

immediately contributing to most neuroscience labs. 

     In addition to teaching important data analysis 
techniques, the lab provides an essential environment for 
students to hone their programming skills.  Computer 
programming can be very frustrating to learn (as Joseph 
Campbell (1988) said, “Computers are like Old Testament 
gods: lots of rules and no mercy”), and dedicating three 
hours each week to coding with an instructor nearby to 
answer questions can save students from hours of 
frustration. 
 
Assessment 
In the classroom portion of the course, students submit 
weekly homework assignments based on exercises from 
the Anastasio text.  They often start these homework 
problems as part of in-class explorations, then finish them 
outside of class.  They also take a midterm exam and a 
final exam, each with 10-15 essay questions pertaining to 
information processing by neural systems. 
     The lab portion of the course also includes midterm 
and final exams, each requiring students to download and 
analyze real-world neural data sets.  It is helpful to have a 
practice exam during lab the week before the midterm 
exam (and possibly also before the final exam), so that 
students know what to expect. 
     Finally, all students have the option to conduct a final 
project in place of the laboratory final exam.  There is large 
variation in how quickly students master the ability to 
program in MATLAB, with some capable of writing 
programs from scratch halfway through the semester, and 
others (in rare cases) who still struggle to write a for loop 
by the end of the course.  A final project provides an 
avenue for advanced students to apply their skills to a real-
world problem they find interesting.  Students who choose 
this option consult with the instructor on an appropriate 
topic, which may involve computationally modeling a neural 
system and/or analyzing neural data (perhaps from their 
own research).  At the end of one month of work (in which 
students submit updates and meet with the instructor each 
week), students give a 10-minute presentation and submit 
a paper detailing their results.  Past projects have included 
analyzing electro-oculogram data to investigate habituation 
of saccadic eye movements, exploring the effects of 
caffeine and alcohol on neural activity in the cockroach 
metathoracic leg, and analyzing the network structure of 
the C. elegans connectome. 
     The distribution of final grades in the course was 3 A’s, 
1 A-, 1 B+, 1 B, and 1 C+. 
 

RESULTS 
To assess student confidence in the skills and concepts 
covered in the course, a questionnaire was administered 
on the first and last days of the Spring 2015 semester.  A 
Likert scale was used to score the anonymous responses.  
Note: all seven students in the class completed the 
questionnaire at the beginning of the course, but only six 
completed the questionnaire at the end. 
     The statements in Fig. 1A were selected to assess 
students’ comfort with computer code, which is 
foundational to Learning Objectives #2 and #3 (modeling 
neural system and analyzing neural data, respectively).  
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The data depicted in Fig. 1B demonstrate significant 
increases in students’ confidence in their general computer 
programming skills.  
 

 
 
Figure 1.  Students’ self-reported agreement with three 
statements pertaining to their computer coding skills.  Statements 
and response options shown in A, results shown in B, with 
horizontal lines indicating mean Likert values.  The one-tailed 
Mann-Whitney U test was used to determine statistical 
significance (* = p<0.05, ** = p<0.01). 

 
     The statements in Fig. 2A were selected to obtain 
students’ assessment of how well Learning Objective #3 
was met.  Students’ confidence in their ability to success-
fully apply fundamental data analysis techniques to neural 
data also increased significantly, as shown in Fig. 2B. 
     Finally, statements 1 through 4 in Fig. 3A were selected 
to obtain students’ assessment of how well Learning 
Objective #1 (understanding fundamental principles of 
information processing in neural systems) was met.  Fig. 
3B shows that students felt they improved significantly in 
their understanding of core principles of neural information 
processing.  Statement 5 probed students’ perception of 
the relevance of Computational Neuroscience to 
understanding the brain.  The data indicate this increased 
only marginally, since most students started the course 
already thinking CN to be highly relevant to investigating 
the brain. 

 

 
 
Figure 2.  Students’ self-assessment of skill level with four 
fundamental data analysis techniques.  Techniques and response 
options shown in A, results shown in B, with horizontal lines 
indicating mean Likert values.  The one-tailed Mann-Whitney U 
test was used to determine statistical significance (* = p<0.05,  
** = p<0.01). 

 
DISCUSSION 
Overall, the data indicate a dramatic increase in student 
facility with core CN concepts as well as with data analysis 
techniques.  Students reported significant increases in their 
understanding of all four assessed CN concepts (Fig. 3), 
although their reported understanding of information theory 
was noticeably lower than the other three subjects, 
suggesting that perhaps more time should be spent on this 
topic.  Likewise, students appear to be slightly more 
comfortable with constructing firing rate plots and tuning 
curves than with applying Fourier analysis and producing 
movies in MATLAB (Fig. 2).  This may be due to the fact 
that the latter two skills were introduced later in the 
semester, when the scaffolded computer code provided 
fewer “hints.” 
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Figure 3.  Students’ self-reported agreement with five statements 
regarding their comprehension of information processing by 
neuronal systems.  Statements and response options shown in A, 
results shown in B, with horizontal lines indicating mean Likert 
values.  The one-tailed Mann-Whitney U test was used to 
determine statistical significance (* = p<0.05, ** = p<0.01). 

 
     A previous study has shown that just a few exposures 
to MATLAB-based CN laboratory exercises over the 
course of a semester dramatically increase student comfort 
interacting with computer code (Nichols, 2015).  The 
course presented in this paper extends that study by 
demonstrating that students without any previous 
programming experience may learn to use MATLAB to 
effectively simulate neural systems and analyze neural 
data in a one-semester, algebra-based CN course. 

     This course has been taught four times at Ohio 
Wesleyan, with a total of 22 students completing it.  Most 
have been neuroscience majors, though computer science, 
physics, and zoology majors have also taken it.  (Most 
students from outside neuroscience have taken the course 
in order to learn basic computer programming skills in 
preparation for graduate studies.)  The course has seen 
several major modifications over the years, including 
spending more time on fundamental programming skills at 
the beginning of the course, incorporating a practice 
midterm lab exam, and expanding the portion of the course 
that reviews matrix computations. 
     Replication of a similar course elsewhere should be 
straightforward, as the only major resource required is a 
computer lab with MATLAB software.  (While Python could 
in principle be used in place of MATLAB, it would require 
translation of the computer code accompanying both 
textbooks.)  All course materials, including a course 
syllabus and raw data for analysis in lab, are freely 
available at http://chrisfink.xyz/teaching/teaching_resour 
ces.html. 
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