
The Journal of Undergraduate Neuroscience Education (JUNE), Spring 2017, 15(2):A117-A121

JUNE is a publication of Faculty for Undergraduate Neuroscience (FUN) www.funjournal.org

ARTICLE
An Algebra-Based Introductory Computational Neuroscience Course with Lab

Christian G. Fink
Neuroscience Program, Ohio Wesleyan University, Delaware, OH 43015.

A course in computational neuroscience has been
developed at Ohio Wesleyan University which requires no
previous experience with calculus or computer
programming, and which exposes students to theoretical
models of neural information processing and techniques for
analyzing neural data. The exploration of theoretical
models of neural processes is conducted in the classroom
portion of the course, while data analysis techniques are
covered in lab. Students learn to program in MATLAB and

are offered the opportunity to conclude the course with a
final project in which they explore a topic of their choice
within computational neuroscience. Results from a
questionnaire administered at the beginning and end of the
course indicate significant gains in student facility with core
concepts in computational neuroscience, as well as with
analysis techniques applied to neural data.
 Key words: computational neuroscience, neural
modeling, computer programming, MATLAB

Computational neuroscience (CN) is a fast-growing field.
The U.S. BRAIN Initiative represents one example of the
need to analyze vast troves of neural data and distill the
results to theoretical models of how the brain processes
information (Insel et al., 2013). While many courses in
computational neuroscience have been developed
previously, most (if not all) require multiple prerequisite
classes in calculus and computer programming (Dayan
and Abbott, 2001; Trappenberg, 2009; Érdi, 2015), which
many traditional neuroscience majors do not take.
Furthermore, such courses typically focus on theoretical
models of how neural systems compute, but do not
address methods of analyzing neural data.
 The Computational Neuroscience course at Ohio
Wesleyan was developed to meet these needs. Students
with no prior experience in calculus or programming learn
to code in MATLAB and apply this skill to simulate neural
processes (using finite difference equations, rather than
differential equations) and to analyze real-world neural
data. While the lack of technical prerequisites necessarily
limits the pace compared to other courses in CN, this CN
course provides traditional neuroscience students the
opportunity to learn the language and mode of thinking of
CN, thus enriching their understanding of neural systems
while developing general data analysis skills that are
applicable in any laboratory setting.

LEARNING OBJECTIVES
Upon successful completion of this course, students will be
able to:
1) explain the fundamental principles of information

processing by neural systems (as they are currently
understood).

2) model simple neural systems by writing simulation code
in MATLAB.

 analyze various forms of neural data using fundamental

computer programming techniques.

COURSE RESOURCES
The course requires three primary resources for students:

the textbooks A Tutorial in Neural Systems Modeling (by
Thomas J. Anastasio) and MATLAB for Neuroscientists: An
Introduction to Scientific Computing in MATLAB (by Pascal
Wallisch and Michael Lusignan), as well as a computer
with access to MATLAB for every student in the course.
Students may also purchase their own discounted
MATLAB student license at http://www.mathworks.com
/academia/student_version/. Instructors may access
course materials developed by the author at

http://chrisfink.xyz/teaching/teaching_resources.html.

COURSE DESIGN

Prerequisites and intended audience
This course is intended for junior- and senior-level
neuroscience majors, and is specifically intended to
develop breadth of knowledge and skills for majors whose
concentration is behavioral, cognitive, or cellular/molecular
neuroscience. (Students majoring in Ohio Wesleyan’s
separate Computational Neuroscience major take a
different course, in theoretical neuroscience.) Course
prerequisites at Ohio Wesleyan are Introduction to
Neuroscience and a low-level statistics course (to ensure
some quantitative competency). Optimal class size is eight
to ten students. Any more than this, and it becomes
difficult for the instructor to keep up with students’
questions as they work through in-class and lab exercises.
Class size could easily be expanded, however, with the
addition of a TA to help answer questions.

Structure
The two fundamental aspects of the course are separated
between the classroom (meeting for 50 minutes three
times per week) and lab (meeting once for three hours
every week), with the classroom portion exploring neural
models through simulation and the lab portion covering
data analysis techniques. Students are expected to
dedicate 8-10 hours to the course per week outside of
class time. Because no previous programming experience
is assumed, the first three weeks of both the classroom

http://www.mathworks.com/academia/student_version/
http://www.mathworks.com/academia/student_version/
http://chrisfink.xyz/teaching/teaching_resources.html

Fink An Algebra-Based Introductory Computational Neuroscience Course with Lab A118

and lab are spent building competence in fundamental
programming skills (for loops, if statements, relational
operators, functions, etc.), motivating these topics with as
many examples from neuroscience as possible. MATLAB
is used as the programming language due to its relatively
shallow learning curve, its widespread use, and the fact
that both textbooks offer many simulation and analysis
examples written in MATLAB.

Classroom
In the classroom portion of the course students use
MATLAB to simulate neuronal networks as they explore
topics including stimulus encoding and neural decoding,
central pattern generators, auto-associative memory,
tonotopic map formation, and information theory (all
following the Anastasio text—see Table 1 for more detail).
A typical class begins with a 10-15 minute lecture framing
the topic and introducing a relevant computational model,
followed by 35-40 minutes of students exploring the topic
for themselves by actually running simulation code. (It is
therefore essential that each student have their own
computer in the classroom.) In most cases students do not
write their programs from scratch, but start with a MATLAB
program provided by the Anastasio textbook.

Week Topics

1 Overview of computational neuroscience; basic
computations and plotting in MATLAB

2 ‘for’ loops and simulating random spiking in neurons

3 Relational operators, writing functions

4 Rate coding, population coding, constructing tuning
curves

5 Gill-withdrawal reflex in Aplysia, positive feedback

and leaky integration

6 Vestibulo-ocular reflex, velocity storage, central
pattern generators

7 Lateral inhibition and edge detection, activity
bubbles

8 Review and mid-term exam

9 Mid-semester break

10 Neuronal synchronization, epilepsy, Parkinson’s
disease, network theory

11 Auto-associative memory, Hopfield networks

12 Hippocampus and anterograde amnesia, distributed
versus sparse representations

13 Kohonen algorithm, brain maps

14 Orientation selectivity in the visual cortex, intro to
information theory

15 Information transmission in neural networks,
relationship of information theory to brain maps

Table 1. Overview of topics covered in the classroom portion of
the course.

For example, the introduction to auto-associative memory
models starts with a short lecture on Donald Hebb’s
hypothesis that “neurons that fire together wire together,”
followed by several examples to illustrate the concepts
pattern completion and pattern separation. Students then
run a simulation exploring how different patterns of neural
activity alter the connectivity between neurons according to
Hebb’s hypothesis, then use the resulting network
connectivity (represented as a matrix) in another simulation

to explore pattern completion and pattern separation.
Students individually complete a worksheet guiding them
through the exploration at their own pace (though they are
encouraged to collaborate), while the instructor answers
questions as they arise.

Lab
In laboratory students work individually to write code to
process real-world data. Examples include constructing a
plot of firing rate versus time from a raw voltage trace
recorded from the Backyard Brains cockroach preparation
(Dagda et al., 2013), constructing a tuning curve from raw
data recorded from the macaque motor cortex (data
accessed from the Matlab for Neuroscientists text), and
generating a movie from raw calcium fluorescence data
recorded from a neuronal culture (see Table 2 for more
details on topics covered in lab). At the beginning of the
semester, to keep students within their zone of proximal
development (Chaiklin, 2003), they are provided with a
“scaffold” of code to start each lab, with blank lines which
they must complete in order to get the program to run
successfully.

Week Topics

1 Intro to MATLAB, Part 1 (Chapter 2, Matlab for
Neuroscientists): Basic functions and computations

2 Intro to MATLAB, Part 2 (Chapter 2, Matlab for
Neuroscientists): Plotting

3 Intro to MATLAB, Part 3 (Chapter 2, Matlab for
Neuroscientists): Functions and ‘while’ loops

4 Rate coding cockroach lab: Use data obtained from
Backyard Brains SpikerBox to plot firing rate versus
time

5 Neural encoding (Chapter 13, MfN): Construct tuning
curves of neurons from macaque motor cortex

6 Integrate-and-fire neuron model

7 Practice lab exam

8 Lab Exam

9 Mid-semester break

10 Fourier analysis I: Analyze signals to determine
dominant frequency components

11 Fourier analysis II: Plot frequency of signal versus
time in order to identify epileptic seizure

12 Image processing: Analyze calcium fluorescence data
from neuronal culture

13 Dialog boxes: User identifies whether or not a
fluorescence trace includes neural activity

14 De-noising signals: Use moving average and moving
median techniques to remove noise from fluorescence
signals

15 Final Lab Exam

Table 2. Overview of topics covered in the lab portion of the
course.

 The following is an example of such scaffolded code,
taken from the cockroach lab mentioned above:

%% Section 1: Import and plot the data

%read in voltage trace from cockroach

experiment
[voltage, srate]= ??? ;

The Journal of Undergraduate Neuroscience Education (JUNE), Spring 2017, 15(2):A117-A121 A119

%create a 'time' array, for which time(ii)

corresponds to voltage(ii)
time= ??? ;

%plot the voltage as a function of time
plot(time,voltage)
xlabel('Time (sec)','fontsize',18)
ylabel('Voltage (arbitrary

units)','fontsize',18)

%% Section 2: process the waveform so that

you have a signal of just 1's and 0's: 1's

for spikes and 0's for everything else

%set threshold to separate spike events

from noise; this is somewhat arbitrary
threshold= ??? ;

%make a copy of ‘voltage’
spikes=voltage;
%set every entry in 'spikes' which is less

than 'threshold' equal to 0
spikes(???)=0;

%in order to convert each spike into a

SINGLE 1 (rather than multiple 1's), take

the discrete difference of 'spikes'
spikes=diff(spikes);
spikes=[spikes; 0]; % add one extra entry

to 'spikes,' so that it has the same number

of elements as 'time'

%set every entry in 'spikes' that is less

than 'threshold' equal to 0
spikes(???)=0;
%set every entry in 'spikes' that is

greater than or equal to 'threshold' equal

to 1
spikes(???)=1;

figure
plot(time,spikes)
xlabel('Time (sec)')
ylim([0 1.1])

As the semester goes on these code scaffolds become
sparser, until in the last lab students write the program
entirely from scratch.

 Table 2 lists the topics covered in lab throughout the

semester. Topics in the first half of the course were

selected with the goal of developing coding competency

using neuroscience-motivated examples. Topics in the

second half of the course focus on imparting the skills most

universally relevant to analyzing neural signals in a

graduate lab. Students with a fundamental understanding

of Fourier analysis, facility with image processing

techniques, and the ability to write a program in which the

user interacts with the data should be capable of

immediately contributing to most neuroscience labs.

 In addition to teaching important data analysis
techniques, the lab provides an essential environment for
students to hone their programming skills. Computer
programming can be very frustrating to learn (as Joseph
Campbell (1988) said, “Computers are like Old Testament
gods: lots of rules and no mercy”), and dedicating three
hours each week to coding with an instructor nearby to
answer questions can save students from hours of
frustration.

Assessment
In the classroom portion of the course, students submit
weekly homework assignments based on exercises from
the Anastasio text. They often start these homework
problems as part of in-class explorations, then finish them
outside of class. They also take a midterm exam and a
final exam, each with 10-15 essay questions pertaining to
information processing by neural systems.
 The lab portion of the course also includes midterm
and final exams, each requiring students to download and
analyze real-world neural data sets. It is helpful to have a
practice exam during lab the week before the midterm
exam (and possibly also before the final exam), so that
students know what to expect.
 Finally, all students have the option to conduct a final
project in place of the laboratory final exam. There is large
variation in how quickly students master the ability to
program in MATLAB, with some capable of writing
programs from scratch halfway through the semester, and
others (in rare cases) who still struggle to write a for loop
by the end of the course. A final project provides an
avenue for advanced students to apply their skills to a real-
world problem they find interesting. Students who choose
this option consult with the instructor on an appropriate
topic, which may involve computationally modeling a neural
system and/or analyzing neural data (perhaps from their
own research). At the end of one month of work (in which
students submit updates and meet with the instructor each
week), students give a 10-minute presentation and submit
a paper detailing their results. Past projects have included
analyzing electro-oculogram data to investigate habituation
of saccadic eye movements, exploring the effects of
caffeine and alcohol on neural activity in the cockroach
metathoracic leg, and analyzing the network structure of
the C. elegans connectome.
 The distribution of final grades in the course was 3 A’s,
1 A-, 1 B+, 1 B, and 1 C+.

RESULTS
To assess student confidence in the skills and concepts
covered in the course, a questionnaire was administered
on the first and last days of the Spring 2015 semester. A
Likert scale was used to score the anonymous responses.
Note: all seven students in the class completed the
questionnaire at the beginning of the course, but only six
completed the questionnaire at the end.
 The statements in Fig. 1A were selected to assess
students’ comfort with computer code, which is
foundational to Learning Objectives #2 and #3 (modeling
neural system and analyzing neural data, respectively).

Fink An Algebra-Based Introductory Computational Neuroscience Course with Lab A120

The data depicted in Fig. 1B demonstrate significant
increases in students’ confidence in their general computer
programming skills.

Figure 1. Students’ self-reported agreement with three
statements pertaining to their computer coding skills. Statements
and response options shown in A, results shown in B, with
horizontal lines indicating mean Likert values. The one-tailed
Mann-Whitney U test was used to determine statistical
significance (* = p<0.05, ** = p<0.01).

 The statements in Fig. 2A were selected to obtain
students’ assessment of how well Learning Objective #3
was met. Students’ confidence in their ability to success-
fully apply fundamental data analysis techniques to neural
data also increased significantly, as shown in Fig. 2B.
 Finally, statements 1 through 4 in Fig. 3A were selected
to obtain students’ assessment of how well Learning
Objective #1 (understanding fundamental principles of
information processing in neural systems) was met. Fig.
3B shows that students felt they improved significantly in
their understanding of core principles of neural information
processing. Statement 5 probed students’ perception of
the relevance of Computational Neuroscience to
understanding the brain. The data indicate this increased
only marginally, since most students started the course
already thinking CN to be highly relevant to investigating
the brain.

Figure 2. Students’ self-assessment of skill level with four
fundamental data analysis techniques. Techniques and response
options shown in A, results shown in B, with horizontal lines
indicating mean Likert values. The one-tailed Mann-Whitney U
test was used to determine statistical significance (* = p<0.05,
** = p<0.01).

DISCUSSION
Overall, the data indicate a dramatic increase in student
facility with core CN concepts as well as with data analysis
techniques. Students reported significant increases in their
understanding of all four assessed CN concepts (Fig. 3),
although their reported understanding of information theory
was noticeably lower than the other three subjects,
suggesting that perhaps more time should be spent on this
topic. Likewise, students appear to be slightly more
comfortable with constructing firing rate plots and tuning
curves than with applying Fourier analysis and producing
movies in MATLAB (Fig. 2). This may be due to the fact
that the latter two skills were introduced later in the
semester, when the scaffolded computer code provided
fewer “hints.”

The Journal of Undergraduate Neuroscience Education (JUNE), Spring 2017, 15(2):A117-A121 A121

Figure 3. Students’ self-reported agreement with five statements
regarding their comprehension of information processing by
neuronal systems. Statements and response options shown in A,
results shown in B, with horizontal lines indicating mean Likert
values. The one-tailed Mann-Whitney U test was used to
determine statistical significance (* = p<0.05, ** = p<0.01).

 A previous study has shown that just a few exposures
to MATLAB-based CN laboratory exercises over the
course of a semester dramatically increase student comfort
interacting with computer code (Nichols, 2015). The
course presented in this paper extends that study by
demonstrating that students without any previous
programming experience may learn to use MATLAB to
effectively simulate neural systems and analyze neural
data in a one-semester, algebra-based CN course.

 This course has been taught four times at Ohio
Wesleyan, with a total of 22 students completing it. Most
have been neuroscience majors, though computer science,
physics, and zoology majors have also taken it. (Most
students from outside neuroscience have taken the course
in order to learn basic computer programming skills in
preparation for graduate studies.) The course has seen
several major modifications over the years, including
spending more time on fundamental programming skills at
the beginning of the course, incorporating a practice
midterm lab exam, and expanding the portion of the course
that reviews matrix computations.
 Replication of a similar course elsewhere should be
straightforward, as the only major resource required is a
computer lab with MATLAB software. (While Python could
in principle be used in place of MATLAB, it would require
translation of the computer code accompanying both
textbooks.) All course materials, including a course
syllabus and raw data for analysis in lab, are freely
available at http://chrisfink.xyz/teaching/teaching_resour
ces.html.

REFERENCES
Campbell J, Moyers B (1988) The Power of myth. (Flowers BS,

ed) New York, NY: Doubleday.
Chaiklin S (2003) The zone of proximal development in

Vygotsky’s analysis of learning and instruction. In: Vygotsky’s
educational theory in cultural context (Kozulin A, Gindis B,
Ageye V.S, Miller SM; eds), pp 39–64. Cambridge, UK:
Cambridge University Press.

Dagda RK, Thalhauser RM, Dagda R, Marzullo TC, Gage GJ
(2013) Using crickets to introduce neurophysiology to early
undergraduate students. J Undergrad Neurosci Educ 12:A66-
A74.

Dayan P, Abbott LF (2001) Theoretical neuroscience. Cambridge,
MA: MIT Press.

Érdi P (2015) Teaching computational neuroscience. Cogn
Neurodyn 9:479-485.

Insel TR, Landis SC, Collins FS (2013) Research priorities. The
NIH BRAIN Initiative. Science 340 (6133):687-688.

Nichols DF (2015) A series of computational neuroscience labs
increases comfort with MATLAB. J Undergrad Neurosci Educ
14:A74-A81.

Trappenberg TP (2009) Fundamentals of computational
neuroscience. Oxford, England: Oxford University Press.

Received October 13, 2016; revised January 10, 2017; accepted January
10, 2017.

This work was supported by NIH Grant No. R01-NS094399.

Address correspondence to: Dr. Christian G. Fink, 61 S. Sandusky St.,
Ohio Wesleyan University, Delaware, OH 43015. Email: cgfink@owu.edu

Copyright © 2017 Faculty for Undergraduate Neuroscience

www.funjournal.org

http://chrisfink.xyz/teaching/teaching_resources.html
http://chrisfink.xyz/teaching/teaching_resources.html

