
The Journal of Undergraduate Neuroscience Education (JUNE), Fall 2015, 14(1):A13-A22 
 

  

JUNE is a publication of Faculty for Undergraduate Neuroscience  (FUN) www.funjournal.org 

ARTICLE 
Pencil-and-Paper Neural Networks: An Undergraduate Laboratory Exercise in 
Computational Neuroscience 
 

Kevin M. Crisp, Ellen N. Sutter, and Jacob A. Westerberg 
Neuroscience Program, St. Olaf College, Northfield, MN USA 55057. 

Although it has been more than 70 years since McCulloch 
and Pitts published their seminal work on artificial neural 
networks, such models remain primarily in the domain of 
computer science departments in undergraduate 
education.  This is unfortunate, as simple network models 
offer undergraduate students a much-needed bridge 
between cellular neurobiology and processes governing 
thought and behavior.  Here, we present a very simple 
laboratory exercise in which students constructed, trained 

and tested artificial neural networks by hand on paper.  
They explored a variety of concepts, including pattern 
recognition, pattern completion, noise elimination and 
stimulus ambiguity.  Learning gains were evident in 
changes in the use of language when writing about 
information processing in the brain. 
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Undergraduate neuroscientists struggle to understand and 
articulate the connections between cellular processes 
governing synaptic integration and excitability, and the 
higher-level cognitive processes of the brain.  In one 
assessment, students were presented with a series of 
terms related to neuroscience, and were asked to classify 
them according to discipline.  They classified the term 
“networks” with terms like “consciousness,” “behavior” and 
“brain,” but not with terms like “cells,” “voltage-gated 
channels,” “modeling” or “electrical potential (Crisp and 
Muir, 2012).  This suggests that undergraduates, while 
able to master content at the cellular level and also at the 
behavioral level, perceive these subfields as independent 
domains rather than hierarchical levels of brain 
organization. 
     Undergraduates have a tendency to offer 
phenomenological explanations for many types of brain 
functions.  While awe of the phenomena is valuable, 
mechanistic understanding is required for posing testable 
hypotheses, understanding the value of interdisciplinary 
approaches and developing self-guided habits of inquiry.  
For example, when we asked students how the brain can 
read distorted text that computers struggle to interpret, 
typical answers included “the brain is used to seeing texts 
in a variety of fonts,” “we can use our memory” and “the 
brain can often fill in the gaps.”  Artificial neural networks 
are often capable of dealing with ambiguity, noise and 
missing data because of the robust and redundant nature 
of distributed representations.  We reasoned that showing 
undergraduates how artificial neural networks could 
perform these brain-like tasks would help them develop a 
more mechanistic understanding of brain function. 
     Similarly, when we asked undergraduates why the brain 
struggles to learn associations between large numbers of 
similar stimuli (like Morse code characters or families of 
chemical structures), typical answers were quite 
phenomenological: “the patterns are very similar to each 
other,” “it takes a lot of repetition,” and “it would be easier if 
there was a pattern.”  Artificial neural networks also 
struggle with learning associations between indistinctive 

stimuli.  In fact, they start making mistakes after learning a 
sufficiently large set of similar associations.  Multiplication 
facts, for instance, are associations with a great deal of 
similarity between the stimuli.  Adults tested on 
multiplication facts tend to produce a 25% error rate, with 
the majority of errors being non-random (Graham, 1987).  
For example, a test subject might incorrectly answer that 6 
* 9 is 56 rather than 54, because 56 is a learned product 
and is approximately the right magnitude.  Viscuso et al 
(1989) showed that an artificial neural network trained on 
multiplication facts also had an error rate of 30%, and 
made errors that were non-random and quite similar to 
those made by humans.  We wondered if showing students 
that artificial neural networks could be used to explain 
certain errors in recall when learning associations between 
very similar stimuli, they would develop a more mechanistic 
understanding of learning-related confusion and forgetting. 
     McCulloch and Pitts (1943) proposed a simple but 
computationally powerful model of a neuron as a binary 
threshold unit.  This seminal work challenged 
neuroscientists to consider the brain as a vast network of 
10 billion interconnected parallel processors.  While the 
McCulloch-Pitts model is so over-simplified as to raise 
serious questions about whether it is a fair representation 
of biological neurons at all, it does offer to serve as a 
cognitive bridge between synaptic plasticity and high-level 
computation.  The model is inspired by cellular 
neurobiology in that artificial neurons integrate inputs from 
presynaptic neurons according to the relative strengths of 
individual synaptic connections, and fires only if the net 
input exceeds a threshold value: 
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where ni represents the activation (or “firing”) state (0 or 1) 
of neuron-like unit i at time t.  ϴ(x) is a thresholding 
function that equals 1 if x ≥ µi (the threshold at which unit i 
fires an impulse), and 0 if x < µi.  The weight wij represents 
the synaptic strength of the synapse from unit j onto unit i. 
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     Arrays of McCulloch-Pitts neurons are capable of 
representing highly complex patterns.  Hopfield (1982) 
developed an associative memory model from arrays of 
McCulloch-Pitts units, and showed that these models could 
store multiple patterns, or associations, superimposed 
across the same synapses, such that: 
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where N is the number of units in the network, p is the 
number of associations stored and ξ represents a pattern 
composed of an array of bits.  Learning in Hopfield 
networks is Hebbian, such that if training necessitates that 
units i and j fire together, weight wij is increased to that 
end.  Thus, in the Hopfield network, not only is information 
stored as a distributed representation across a matrix of 
synaptic weights, but multiple associations can be 
superimposed over the same matrix.  McNaughton and 
Morris (1987) used a correlation matrix formalism to 
illustrate the principles of distributive associative memory in 
the context of hippocampal circuitry.  This formalism 
simplified the procedures for training and recall from such 
networks and has been used to demonstrate such 
phenomena as distributed representations and cued recall. 
      From their inspiration from biological nerve cells to their 
computational power, these types of models present a 
valuable bridge to help undergraduate neuroscientists 
connect synaptic physiology to higher cognitive processes, 
such as pattern completion and associative learning.  
There are many free simulation tools that can offer 
students an opportunity to develop large-scale simulations 
and exposure to impressive processing power.  However, 
computer-based simulation labs are often described by 
students as tedious, frustrating, and inefficient uses of their 
lab time (Crisp 2012).  Because of this, students report 
plowing through the activities to get them done and 
learning less from these experiences than from hands-on 
laboratory exercises. 

     Here, we present a set of laboratory exercises that have 

been developed over several years in which students 

“trained” neural networks using simple correlation matrices 

on paper.  The model, based on the formalism by 

McNaughton and Morris (1987), allowed students to teach 

the network associations between patterns of ones and 

zeros.  The students observed how synaptic strengths 

change throughout the network in response to learning.  

They measured how many associations the network could 

reliably learn.  They saw the difficulties in recall (output) 

that occur when input patterns are closely related.  Pre- 

and post-exercise assessments were conducted to 

determine the extent to which the activity helped the 

students to understand the following concepts and learning 

objectives: pattern recognition in the presence of noise; 

pattern completion when presented with a partial cue; and 

saturation with minimally-discriminable stimuli. 

 

MATERIALS AND METHODS 
Pencil-and-Paper Neural Networks: In the prelab lecture 
(additional resources: http://pages.stolaf.edu/crisp/), 
students were asked to consider a simple example of 
learning in which a squirrel uses the positions of trees in a 
yard to located cached acorns.  This problem could be 
solved by a simple artificial neural network consisting of an 
input layer in which the activity of the neurons represents 
the positions of the trees, and an output layer in which the 
pattern of neural activity represents the positions of the 
acorns (Fig. 1). 

 
 

Figure 1.     A very simple example of a task in which a squirrel 

associates a pattern of trees in a yard with a matching map of 
stashed acorns in the yard.  Students were asked to consider a 
neural network with the task of recalling a map of acorns (output) 
when prompted with a map of trees (input). 

 
     They were told to assume that every neuron in the input 
layer synapses upon every neuron in the output layer, and 
that by varying the weights of these synapses, the network 
“learned” to associate a map of trees with a map of cached 
acorns (Fig. 2).  The map can be represented as a vector 
of zeros and ones, where a zero indicates that nothing is 
present, and a one indicates that a tree (input layer) or 
acorn (output layer) is present.  The synaptic connections 
can be represented as a matrix in which each synapse 
represents a specific synapse of one input neuron onto one 
output unit.  This synaptic matrix is initially populated by 
zeros, but zeros change to one when synapses are 
strengthened during learning. 
     The students were shown how to teach the network by 
constructing pairs of arbitrary vectors (such as 
[1,0,1,1,0,0,0,0,1] and [1,0,0,0,1,0,0,1,1]) and training the 
network to associate them.  This is done by applying 
Hebb’s law in the strictest sense: for each neuron in the 
input pattern that is active (has a state of 1), every synapse 
from that unit onto an active unit in the output pattern is 
strengthened (Fig. 3).  To keep the math very simple, 
strengthened synapses are changed only from zero to one.  
Note that in the model, synapses are never weakened 
(changed back to zero from one). 
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Figure 2.  A simple two-layer neural network model that 

associates an input pattern with an output pattern.  The input and 
output patterns are represented by vectors of zeros and ones.  A 
neuron in the input layer is “active” if its corresponding value in 
the vector is a one, and it is “inactive” if its corresponding value in 
the vector is a zero.  The synaptic matrix represents the 
connections of every neuron in the input layer onto every neuron 
in the output layer.  Because every neuron in the network is 
connected to every other neuron, a layer of neurons can be 
represented as a 3x3 matrix or as a unidimensional vector. 
 

     Later, when the network is presented with the input 
pattern of activity as a cue, they observe that the output 
layer generates the appropriate learned output pattern of 
activity.  This was shown to them to approximate Eq. 1.  As 
each column in the matrix represents all of the 
 

 
 
Figure 3.   A synaptic matrix that has been trained to associate a 
nine-neuron input pattern of activity with a nine-neuron output 
pattern.  Note that since every neuron talks to every other neuron, 
the simplification of the 2D map to a vector has no effect on the 
connectivity of the network.  Each cell in the matrix represents a 
synapse from the corresponding input neuron onto the 
corresponding output neuron.  After training, every synapse 
between an active input unit and an active output unit has a 
strength of 1. 

synapses onto one particular output neuron, the students 
first calculated the sum of all the products of the weights in 
the column multiplied by the activity of the respective 
neuron in the input layer.  Then, they applied a 
thresholding function (described below) is applied to this 
sum (Fig. 4). 

 
 
Figure 4.  Simulating recall of the correct output pattern when the 

artificial nerve net is prompted with a trained input pattern.  Recall 
is simulated by multiplying the input vector i by the synaptic matrix 
M such that the recalled pattern r = i*M (see Eq. 1).  In this 
example, the column sum is five only if all the neurons that were 
active in the original pattern are also active during recall.  The 
column sum represents the summed synaptic inputs in the 
dendritic tree of the output unit associated with that column, and 
the thresholding function reflects the all-or-nothing character of 
neuronal firing. 

 
      We have simplified the math for the students after 
McNaughton and Morris (1987) by using only zero or one 
for each synaptic weight.  Note from Eq. 2 that the correct 
synaptic weights would usually be a rational number 
between zero and one.  The thresholding function θ(x) 
returns a one if the column sum of products is at least as 
great as the number of ones in the pattern at the time of 
learning (e.g., in the original pattern).  Thus, if there were 
four ones in the original pattern, each unit in the output 
layer would be active if the sum of its inputs multiplied by 
their respective weights is greater than or equal to four.  
However, θ(x) returns zero if the sum of the products in a 
given column is less than the number of ones in the 
original pattern.  This method is a simplification that makes 
the math easy for the students and places focus on the 
conceptual learning.  It also means that the networks are 
usually tolerant of noisy input patterns that are close to the 
original training pattern but have an extra one in the inputs.  
However, because of this thresholding method, in order for 
the network to correctly interpret an incomplete input 
pattern (in which one of the ones in the input vector has 
been changed to zero), the column sums must be 
evaluated with respect to the new number of ones in the 
incomplete pattern rather than the number of ones in the 
original pattern. 
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     Students were thus instructed that when applying the 
thresholding function, they should compare the column 
sum to the lesser of the two following values: (a) the sum 
of the ones in the input pattern currently presented to the 
network, or (b) the sum of the ones in the original input 
pattern with which the network was trained.  This 
thresholding function preserves the use of very simple 
math and results in networks that are tolerant of noise and 
incomplete cues: 
 
µi = the lesser of (a) the number of ones in the input     (3) 
        pattern, or (b) the number of ones in the output 
        pattern. 
  

ϴ =  [    1, if 
j

jij tnw )(  ≥ µi, or                                      (4) 

             0, if 
j

jij tnw )(  < µi      ] 

        
In-Lab Exercises: The students are presented with the 
exercises in Appendix A following the pre-lab lecture.  A 
brief explanation of each exercise follows.  Sample 
answers to the problem set are available upon request 
from the corresponding author (KM Crisp). 
(1) The students are first instructed to draw a 4x4 grid 
representing the connections of 4 input neurons onto 4 
output neurons.  Each neuron is connected to each other 
neuron, and the strength of each synapse (initially zero) is 
represented by a one of the 16 squares in the grid.  Note 
that row 1 in the grid represents the strengths of the 
synapses of input layer cell 1 onto each of the output layer 
cells, and so on. 
     Next, the students “train” their network.  They must be 
made to understand that although our brains are always 
learning and recalling, neural networks are often conceived 
of as having discrete “training” and “testing” states.  
Synaptic strengths are only permitted to change in the 
training state; they are static in the recall phase.  Training 
this network requires the students to come up with two 
arbitrary patterns, such as: (1,0,1,0), (0,0,1,1), (1,1,0,1), 
etc.  One pattern will serve as the input pattern and be 
represented as a vertical vector to the left of the matrix; 
they represent the states (1 = firing or 0 = not firing) of the 
four input layer neurons.  The other pattern will serve as 
the output pattern and be represented as a horizontal 
vector along the top of the matrix, where they represent the 
states of the four output layer neurons.  The process of 
training simply involves applying Hebb’s rule: anytime a 
presynaptic neuron is active and a postsynaptic neuron is 
active, the synapse between the two is strengthened 
(changed from zero to one).  But note that the reverse is 
not true; ones are never changed back to zeros, or the 
network will forget what it previously learned! 
    Finally, the students “test” their network.  The students 
present the original input pattern to the network, usually by 
writing it off to the left of the grid.  Because each output 
unit will sum all of its inputs (times their respective synaptic 
strengths; see Eq. 1), the next step is to tally the sums of 
each column.  Thus, for each synapse onto output neuron 

number one, the input neuron’s state times its respective 
synaptic strength (onto output neuron one; e.g., column 1) 
is added to the tally.  If the total column tally is greater or 
equal to the number of input neurons that are active in the 
input pattern (see Eqs. 3-4), then the state of the first 
output unit is 1.  Otherwise, the state of the first output 
neuron is zero.  This is repeated three more times for the 
remaining output layer neurons (columns 2-4).  Finally, the 
calculated output states are compared to the expected 
output states (the original output pattern that the network 
was trained with) to see if the network has recalled 
correctly. 
     Students should be warned that their networks cannot 
learn an association in which either input or output state is 
(0,0,0,0), and that pairing input state (1,1,1,1) with output 
state (1,1,1,1) will immediately saturate all synapses so 
that the network will not be able to learn anything further in 
the next exercises.  Finally, if the input pattern has only a 
single one, the next activity will not work. 
(2) Next, the students test the ability of the network to 

recall an association even if the cue it is prompted with is 
incomplete.  Recognizing patterns even when some data 
are missing is something that the human brain is very good 
at.  This exercise is meant to show that this ability is an 
emergent property of the redundancy intrinsic to distributed 
representations across synapses.  The students test the 
network with a pattern that is similar to the one it was 
trained on, but is missing a one.  For example, if the 
network was trained to associate input pattern (1,0,1,0) 
with output pattern (0,0,1,1), for this exercise, it will be 
tested with input pattern (1,0,0,0) or (0,0,1,0).  This is done 
precisely as the testing was done in exercise (1).  The only 
difference is the pattern used as a cue from which to recall 
(calculate) the output.  This exercise demonstrates a key 
learning objective (see Appendices B and C, Q2). 
(3) Another fascinating feature of the brain is its ability to 

recognize patterns even when noise (e.g., static) obscures 
the input.  This ability can also be explained in part by the 
robustness of associations that are stored in a distributed 
fashion across synapses, allowing networks to generalize 
across closely related inputs.  This exercise also 
demonstrates a key learning objective (see Appendices B 
and C, Q1).  The procedure is the same as exercise 2, but 
the students add an extra one to the original input pattern 
(from exercise 1), instead of taking one away as they did in 
exercise 2.  Note that this exercise will only work if the 
thresholding function (see Eqs. 3-4) is followed correctly. 
(4) At this point in the exercises, the students should have 

learned the basic procedures required to experiment with 
pencil-and-paper neural networks.  They are ready to work 
with larger networks (6x6) and able to teach the same 
network two different associations.  When training their 
networks with a second association, they must be careful 
not to train the same input pattern with two different output 
patterns.  They also must take care not to convert ones 
back to zeros during the second training, or the network 
will forget the first association.  They should be able to 
show that their networks can represent two different 
associations by storing information in the form of strong 
and weak synapses.  When prompted with the input from 
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the first association, they should get the first output from 
the pairing they used to train the network, and likewise with 
the second association. 
(5) Hamming distance is a way of describing the distance 

between two binary vectors.  It is calculated by lining two 
vectors up and counting the number of bits (ones and 
zeros) that are different between the two patterns.  The 
Hamming distance is greatest between two orthogonal 
binary sequences (for which the dot product is zero).  For 
example, the Hamming distance between (0,1,0,1,0,1) and 
(1,0,1,0,1,0) is 6.  The Hamming distance is lowest for 
patterns that differ by only one bit.  When a trained network 
has been presented with an input it has not seen before, it 
should treat that input as though it were the trained input 
pattern with the shortest Hamming distance to the novel 
pattern that it is seeing for the first time.  If, however, the 
novel pattern is at an equal Hamming distance from two 
trained input patterns, it may treat the novel input as a 
hybridized version of the two trained inputs, and thus recall 
a nonsensical, hybridized output.  Previously learned 
patterns can be conceived of as “attractors” or “basins of 
attraction”, similar to well-worn ruts on a dirt bike trail; bike 
wheels tend to gravitate into these ruts, and once in one 
stay there.  Similarly, networks in novel states of activity 
tend to fall into the nearest state of activation.  Specifically, 
they tend to develop the state of activation with the lowest 
Hamming distance to the novel state.  (Of course, if the 
bike is equally distant from two ruts in this analogy, one tire 
gets stuck in one rut, the other in the opposite rut, and the 
biker crashes down somewhere in the middle!) 
(6-7) The load parameter α is a value that relates to the 
degree of saturation of the network.  It is calculated by 
dividing the number of patterns stored by the number of 
neurons that make synapses in the network (the number of 
neurons in the input layer).  Another way to measure 
saturation is to determine the fraction of synapses that can 
be strengthened before the networks begins making errors 
in recall.  For the last two exercises, the students study the 
degree of saturation of the network at the point where it 
first begins to make mistakes.  They should be encouraged 
to think about their own learning experiences while 
completing this exercise.  For example, they may notice 
that less distinct patterns (with shorter Hamming distances) 
lead to mistakes at a lower level of saturation, which is one 
explanation of why it is hard to memorize large numbers of 
very similar stimuli (see Q3 in Appendices B and C).  Also, 
they should note that these types of associative networks 
are quite characteristic of hippocampal connectivity.  
Because the hippocampus is necessary for short-term 
memory and has a limited load factor, we rely on our ability 
to consolidate memories into long-term representations 
stored elsewhere.  This is one possible explanation of the 
effectiveness of paced learning. 
Assessment of Learning: To assess learning due to this 
pencil-and-paper neural network activity, students were 
given two ten-minute writing exercises.  The pre-exercise 
assessment (Appendix B) was conducted in class the day 
prior to the lab activity, immediately after a 10-minute 
introduction to the concept of the McCulloch-Pitts neuron 
model.  The post- exercise assessment (Appendix C) was 

conducted in class on the day following the lab activity.  
Students’ responses were digitalized for quantitative 
analysis of word counts and frequency of term use, as well 
as for qualitative assessment of learning.  St. Olaf College 
IRB approval was obtained for all assessment included 
within this study. 
 

RESULTS 
The activity took most students 90 minutes to two hours to 
complete when working in groups.  Each lab section had 
16 to 18 students, one instructor and one teaching 
assistant.  The students were diverse in their academic 
majors, with psychology (39%), biology (33%), and 
chemistry (15%) having the highest representation.  Other 
majors represented included nursing, physics, religion, 
philosophy, exercise science, French, mathematics and an 
individualized major.  76% of the students were enrolled in 
the neuroscience concentration program.  Their class 
years were as follows: 15% seniors, 48% juniors, 33% 
sophomores, and 3% first-years.  There were 13 men and 
20 women in the class.  The students worked in groups of 
two to four to complete the activity.  Although they worked 
in groups, each student performed the activity 
independently, with their own arbitrary input and output 
patterns applied to each of the exercises in Appendix A. 
     Research on artificial neural networks suggests that 
redundant synaptic connections permit a network to 
respond to a novel stimulus as it would to a closely related, 
familiar input.  On the other hand, the ability to learn 
multiple patterns is greater when the patterns are 
distinctive than if they are similar due to overlapping pools 
of synaptic connections.   It was our hope that by carrying 
out the activities described here (see Methods and 
Appendix A), students would develop a mechanistic 
understanding of how their brains may cope with noisy, 
incomplete and closely related information.  The assess-
ment writing activities were designed in parallel around 
three questions: (1) How do neural networks deal with 
noisy/fuzzy input?  (2) How do neural networks deal with 
incomplete input (partial cue)?  (3) How do neural networks 
deal with confusingly similar inputs (distinctiveness)?  
Analysis of answers to open-ended questions is difficult.  
As a start, we asked whether the students had more to say 
in response to the prompts after the lab activity (word 
count) and at what grade level (complexity) were their 
answers written from a readability analysis perspective.  
The results of the quantitative analysis of the responses to 
these questions are shown in Figure 5. 
     With respect to how neural networks deal with noisy 
data (Q1; see Appendices B and C), the students wrote the 
same length answers on the post-exercise assessment 
(42.5 ± 2.3 [standard error of the mean] words; n = 32) as 
they did on the pre-exercise assessment (40.7 ± 2.3 words; 
n = 31).  Paired-samples t-tests were conducted to 
compare words per answer in the pre- and post-exercise 
answers to Q1.  There was no difference between the pre- 
and post-scores for Q1 (t30 = 0.56).  Readability statistics 
indicate how suitable a text is for a hypothetical audience.  
The Flesch-Kincaid grade levels are commonly used to 
predict the appropriateness of texts to readers of different  
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Figure 5.  Comparison of students’ written response length (left) and sophistication (right) from the three pre- and post-exercise 

assessment questions (see Appendices B and C).  

 
experience levels, as well as to provide feedback to writers 
about the suitability of their work for the intended audience.  
Grade level is calculated by a formula that takes into 
account words per sentences and syllabi per word (Kincaid 
et al., 1975).  Such methods have been shown to strongly 
correlate comprehension measured by standardized 
reading tests (DuBay, 2006).  The complexity of the 
students’ writing (sentence length and grammatical 
complexity) did not change (t30 = 1.24) after the lab activity 
in their answers to Q1 (from 9.34 ± 0.36 to 9.97 ± 0.39 on 
the Flesch-Kincaid reading scores as calculated by 
Microsoft Word; n = 31). 
     Qualitatively, their answers to Q1 on the pre-exercise 
assessment focused on phenomenological explanations: 
the most common answers they gave were that the brain 
figures things out from context (10 instances), and fills in 
missing information (7 instances).  After the activity, 
answers that were based on filling in the gaps and using 
context decreased, and answers related to neural network 
mechanisms increased.  The following neural network 
related terms increased in the post-exercise assessment: 
“filter” (from 0 to 5 instances), “input” (from 6 to 24 
instances), “output” (from 0 to 16 instances), “recall” (from 
0 to 6 instances), “train-“ (from 0 to 7 instances), and 
“noise” (from 1 to 30 instances).  Thus, while the total 
number of words used and complexity of answers in 
answers to Q1 did not change, the terminology used 
showed a shift to the inclusion of concepts relevant to 
neural networks. 
     Changes in student answers for Q2 and Q3 were less 
subtle.  Student answers to Q2 increased in length from 
26.1 ± 2.2 words (n = 31) to 36.9 ± 2.1 words (n = 32), 
while answers to Q3 increased from 28.7 ± 2.3 words (n = 
31) to 44.6 ± 2.9 words (n = 32).  Similarly, the 
sophistication (Flesch-Kincaid reading score) of the 
answers changed from 6.5 ± 0.7 (n = 31) to 9.93 ± 0.4 
(n=32) on Q2, and 8.85 ± 0.5 (n = 31) to 10.6 ± 0.3 (n = 32) 
on Q3.  These differences in the changes of individual 
students’ response lengths concerning partial cue (Q2; t30 
= 3.35; p < 0.01) and distinctiveness (Q3; t30 = 6.03; p < 
0.001) were statistically significant.  Paired-samples t-tests 
comparing Flesch-Kincaid reading scores also revealed 
significant difference in the changes of individual students’ 

response lengths concerning partial cue (t30 = 3.71; p < 
0.01) and distinctiveness (t30 = 3.24; p < 0.01). 
     Terms relating to neural networks also increased in 
post-exercise assessment responses to Q2 compared to 
the pre-exercise assessment, including “network” (from 1 
to 13 instances), “incomplete” (from 0 to 17 instances), 
“input” (from 0 to 20 instances), and “output” (from 1 to 17 
instances).  Neural network related terms that were more 
prevalent in the post-exercise assessment responses to 
Q3 included “network” (from 1 to 8 instances), “input” (from 
0 to 12 instances), “output” (from 1 to11 instances), 
“pattern” (from 11 to17 instances), and “saturat-“ (from 0 to 
7 instances).  Note that the stem “saturat-“ was counted 
because it appeared in several forms (e.g., saturate, 
saturation, etc.).  We did this with other stems, too, such as 
“neu-” and “nerv-.” 
     Across all three questions, several terms of relevance to 
neural networks increased in frequency of use from the 
pre-exercise assessments to the post-exercise assess-
ments (see Fig. 6).  The term “brain” increased from 42 to 
68 instances, “input” from 6 to 55 instances, “output” from 2 
to 41 instances, “network” from 5 to 29 instances and 
“pattern” from 15 to 31 instances.  Words with the stems 
“neu-“ and “nerv-“ increased from 6 to 28 instances. 
     A few examples of student answers before and after the 
lab exercises are shown in Table 1.  Our impression from 
reading the raw answers that were turned in during the 
assessment exercises were that the students were learning 
to think about mechanisms behind these phenomena.  We 
feel that our quantitative analysis, although simple, largely 
support our qualitative impressions. 
 

DISCUSSION 
Since we first introduced these exercises five years ago, 
they have been used for in-class and in-lab exercises at St. 
Olaf College in the Cellular and Molecular Neuroscience 
class, the Bio-Math seminar, an upper division seminar 
called “The Neuron,” and the Science Conversation 
seminar series.  Because these exercises appeared to be 
useful in helping the students to comprehend high-level 
concepts such as distributed representation of memories 
and the role of synaptic plasticity in memory formation, we 
endeavored to take a more rigorous approach to assessing  
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Table 1.  Comparison of students’ written responses to assessment questions before and after the lab activity.  Pre- and post-lab 

sample answers are provided from the same student, with a different student represented for each pair. 
 

specific learning outcomes.  Quantifying learning gains can 
be challenging, especially in interdisciplinary fields where a 
fundamental outcome is that the students gain an 
appreciation of and an ability to use content and practices 
from multiple disciplines to solve a problem (Crisp and 
Muir, 2012). 
     We settled on the following learning outcomes: after the 
activity, students should be able to use terms and concepts 
from neural network theory to discuss (1) how the brain 
extracts meaningful information from noisy inputs, (2) how 
the brain uses prior learning to complete information when 
presented with a partial cue, and (3) why the brain 
struggles to form correct associations among stimuli that 
are highly similar (low distinctiveness). 
     Thus, the pre- and post-exercise assessment activities 
were designed in parallel, such that the students wrote to 
each learning outcome both before and after the activity, 
although the specific examples presented differed in the 
pre- and post-exercise assessments.  One problem with 
the assessment questions was that several students were 
not able to figure out what the image was in question 2 
(Q2) of the pre-exercise assessment likely due to a 
decreasing familiarity with soda cans (see Appendix B).  
Because of this, it is not clear whether they had more to 
say about the answer to Q2 after the assessment, or if they 
did not understand the pre-exercise assessment Q2 
sufficiently to say much about it.  However, frequency of 
use of neural network-related terms in post-exercise 
assessment Q2 still suggests a better understanding of the 
concept of an incomplete input.  Gains in sentence length 
and response sophistication were also seen in Q3 after 
assessment, and the students seemed to have no difficulty 
in recognizing or understanding the examples used for Q3. 
     Little difference in how much they wrote or in the 
sophistication of their writing was observed after the 
activity with respect to how the brain deals with noisy data.  
However, the content analysis revealed increases in the 
frequency of use of terms related to neural networks (such 
as “input,” “output,” “training,” “recall” and “noise) after the 
activity compared to student responses during the pre- 
assessment.  This change in term use was present across 
all three assessment questions.  Overall, the change in 
language use seemed to suggest a transition from 

describing the phenomena illustrated by the example to 
explanations of a more mechanistic nature.  For example, 
one student wrote before the pencil-and-paper neural 
network activity in response to Q2 about an incomplete 
input: “We recognize different aspects of the picture 
despite changes in lighting/shading and connect it to 
something we have seen before.  The brain likes to find 
patterns.”  After the lab activity, the same student wrote in 
response to how the brain can recognize a phrase with 
letters missing: “It’s easy to fill in the missing letters 
because this represents an incomplete input (stimulus) 

 
Figure 6.  Word clouds of the students’ responses to the 

assessment questions.  Pre- (top) and post-exercise assessment 
(bottom) responses were pooled across the three questions.  
Common words specific to the stimuli (e.g., “Morse code”, 
“Molecule”) were omitted.  Images generated using 
TagCrowd.com. 
 

Pre-Lab Sample Answers    Post-Lab Sample Answers 
 “Brain[s] can recognize words/patterns better because “Even with noise in the image, there is enough similarity within 
 they can also infer meaning from context” (Q1)   the patterns, causing the closest matching pattern to ‘fire.’” (Q1) 
 
“Characteristic patterns and cues… connections to   “Our neural networks yesterday showed that we can have an  
previous examples…” (Q2)     omission in the input and still have the same output due to the 
       connections made by other associations in the synapses.” (Q2) 
 
 “They are relatively similar… Nerves that fire based on  “Because the stimuli are so similar the Hamming distance must 
similar patterns are all going at once.” (Q3)   be very small and it’s easy to get one pattern instead of another. 
       The similarity between patterns… makes it very easy for the 
       brain to become confused and have trouble learning…” (Q3) 
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and, given an already strengthened synapse, the correct 
output (complete phrase) can be recalled even though the 
input is incomplete.” 
     It was the general impression of instructor and the 
teaching assistants that the activity was well received.  
One student wrote a note on their assessment piece that 
read “Continue to do this lab in the future.  It is quick, 
simple, fun and informative.” Some students disliked the 
exercise because it was a “dry lab” experience.  They 
preferred labs that involved microscopy and 
electrophysiology (e.g., a later lab where we recorded 
action potentials intracellularly from leech ganglia).  Other 
students seem to connect very well with the pencil-and-
paper neural network exercises.  One group of students 
from the prior year used the model as the basis for an 
independent project where they tried to produce a nerve 
net capable of playing tic-tac-toe.  Another group from the 
assessed cohort adopted the model as the basis of an 
independent project in a software design course. 
     The students struggled with concepts such as Hamming 
distance and load parameter and how these related to 
neural network function.  They also tended to make errors 
at first when training a network with multiple patterns in 
which they changed ones to zeros and seemed puzzled 
when the network failed to recall what it had previously 
learned.  Some did not understand the training and testing 
states, and changed synaptic weights during testing with 
novel patterns.  A few students were troubled by the 
thresholding function and what it meant biologically for the 
threshold to be different when the network was presented 
with an incomplete pattern.  The explanation of this is non-
trivial.  In a winner-take-all network, the output units with 
the highest dendritic sums become active.  This is perhaps 
the simplest way of setting a threshold.  However, we are 
recommending here a variant of the Wilshaw strategy, in 
which the threshold is equal to the number of ones in the 
input pattern.  The Wilshaw strategy has been shown to 
improve storage capacity and reduce error rates compared 
to other winner-take-all networks.  (Wilshaw et al., 1969; 
Graham and Wilshaw, 1994).  In our variant, it is equal to 
the lesser of the number of ones in the test pattern or the 
number of ones in the original input pattern.  This is still a 
fairly simple rule to execute, but affords networks that are 
more forgiving of ambiguous inputs.  In conversations with 
students about the biological meaning of threshold, they 
seemed to make the assumption that the threshold must 
be exactly equal to the net dendritic sum, when in reality 
many synapses employ a safety factor to ensure signaling 
fidelity.  For example, far more neurotransmitter is released 
at the neuromuscular junction than is required to bring the 
sarcolemma to threshold. 
     We have not yet tried using software to augment the lab 
experience.  When the students do the activities by hand, 
they seem to develop a clear concept of how the model 
works.  Using a simulator of these types of networks might 
obscure the inner workings.  However, when used 
alongside the pencil-and-paper neural network exercises, 
simulation software may allow the students to work with 
larger, more complex patterns, and might make 
phenomena such as noise reduction and pattern 

completion easier to interpret and more exciting to 
observe. 
     Simple artificial neural networks have a great deal of 
potential as teaching tools to help students build 
connections between cellular and network level 
phenomena and higher-order processes like thought and 
behavior.  We have used variations of such networks to 
construct oscillatory networks in simulations of rhythmic 
animal behaviors, to demonstrate lateral inhibition in visual-
processing systems such as the Limulus eye, and to build 
artificial intelligence systems capable of playing Tic-Tac-
Toe.  We hope that the demonstrations herein described 
inspire faculty to incorporate artificial neural networks into 
their teaching in new and exciting ways. 
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APPENDIX A.  List of in-lab exercises. 
 

1. Teach a 16-synapse network (with 4 input neurons and 4 
output neurons) to pair an input pattern with an output 
pattern.  Then test the network with the same input 
pattern.  Does it recall the correct output pattern? 

2. Using the trained network you generated in (1), test the 
network with an incomplete version of the input pattern 
you trained it with.  Is it still capable of recalling the 
correct output pattern, even with an incomplete “cue”? 

3. Test the trained network you generated in (1) with a 
noisy version of the original training input pattern, in 
which at least one of the zeros in the original pattern is 
now a one.  Can it recall the correct output pattern even 
when there is interference in the input cue? 

4. Teach a 36-synapse network (with 6 input units and 6 
output neurons) to associate an input pattern with an 
output pattern.  Then, teach it a second association 
between a new input pattern and a new output pattern, 
being careful only to strengthen and never to weaken 
synapses.  Test this network with both input patterns.  
Can it faithfully recall the correct output patterns? 

5. Test the network with a distorted version of one of the 
two training patterns (e.g., a version with an extra one or 
an extra zero).  Does it recall the correct output pattern?  
Calculate the Hamming distance (number of different 
bits) between the novel input and the two trained inputs.   
Does it treat the novel pattern as though it were the 
learned pattern with the smallest or largest Hamming 
distance from the novel pattern?  What happens if you 
give it a novel input pattern which is the same Hamming 

distance from both of the learned patterns? 
6. How many paired associations can you teach the 

network you developed in (4) before it starts making 
mistakes in recall?  What fraction of the synapses are 
strengthened when it starts making mistakes?  What’s 
the load parameter (α) of the network?  (The load 
parameter is calculated by dividing the number of stored 
patterns by the number of neurons in the input layer.)  

7. Calculate the maximum load parameter for the network 
you developed in (1).  Do the two load parameters 
differ?  What does this suggest about the information-
storing capacity of the two networks? 

 
 
APPENDIX B.  Pre-Lab Assessment 
 
Using what you already may know about neural networks, write to 
each of the following: 
 
Original Text: 

 
 

After optical character recognition: 

 
 
Q1: Why is it relatively easy for the brain and harder for machines 
to recognize scanned text? 
 

 
(http://floorsix.blogspot.com/) 

 
 
Q2: Why is it relatively easy to figure out what this is a picture of? 
 
 

 
 
Q3: Why is it relatively hard to learn the names of organic 
molecules? 

 
 
APPENDIX C.  Post-Lab Assessment 
 
Using what you learned about neural networks in yesterday’s lab, 
write to each of the following: 
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Q1: Why is it relatively easy for the brain and harder for machines 
to recognize CAPTCHAs? 

 
 
Q2: Why is it relatively easy to fill in the missing letters? 
 
 
 

 
 
Q3: Why is it relatively hard to learn the international Morse 
code?

 


