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David Marr famously proposed three levels of analysis 
(implementational, algorithmic, and computational) for 
understanding information processing systems such as the 
brain.  While two of these levels are commonly taught in 
neuroscience courses (the implementational level through 
neurophysiology and the computational level through 
systems/cognitive neuroscience), the algorithmic level is 
typically neglected.  This leaves an explanatory gap in 
students‟ understanding of how, for example, the flow of 

sodium ions enables cognition.  Neural networks bridge 
these two levels by demonstrating how collections of 
interacting neuron-like units can give rise to more overtly 
cognitive phenomena.  The demonstrations in this paper 
are intended to facilitate instructors‟ introduction and 
exploration of how neurons “process information.” 
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David Marr famously proposed that three levels of analysis 
are required to fully understand an information processing 
system such as the brain:  the implementational level, the 
algorithmic level, and the computational level (Marr, 1982).  
The implementational level of analysis concerns the 
physical substrate of a system, such as neurons in the 
brain or electronic components in a computer.  At this level, 
for example, neurophysiology examines the 
electrochemical activities of neurons.  The algorithmic level 
addresses the information processing functions carried out 
by these activities.  Artificial neural networks are 
particularly well suited for analyzing cortical algorithms 
because they are explicitly constructed as systems 
mapping inputs to outputs using nodes (neurons) and 
connections (synapses) inspired (at varying levels of 
implementational realism) by neurophysiology.  Relatively 
simple examples include depictions of how the receptive 
fields of photoreceptors combine to give rise to the 
ganglion cells‟ center-surround receptive fields, which 
combine further downstream to create the receptive fields 
of simple cells in the primary visual cortex.  Finally, the 
computational level identifies teleological explanations for a 
system‟s functioning.  Methodologies such as functional 
magnetic resonance imaging, positron emission 
tomography, and transcranial magnetic stimulation, for 
example, are useful in triangulating the gross functions or 
goals of a brain area.  Thus, we know that the prefrontal 
cortex plays a role in top-down attention; however the 
precise ways (viz., algorithms) by which the prefrontal 
cortex executes this role are still under active investigation. 
     Biopsychology and neuroscience textbooks typically 
give extensive treatment to the implementational and 
computational levels of analysis, but dedicate little 
coverage to the algorithmic level.  The teaching of neural 
networks, in particular, is typically neglected in introductory 
and even advanced biopsychology/neuroscience courses.  
For example, John Pinel‟s Biopsychology (6

th
 Ed.) 

progresses from “The Anatomy of the Nervous System” 
(Ch. 3) and “Neural Conduction and Synaptic 
Transmission” (Ch. 4) to “The Research Methods of 

Biopsychology” (Ch. 5) and “The Visual System” (Ch. 6).  
Breedlove, Rosenweiz, and Watson‟s Biological 
Psychology (5

th
 Ed.) differs somewhat, by following 

chapters on neuroanatomy and neurophysiology with 
chapters on neuropharmacology and the endocrine 
system.  In their chapter on neurophysiology, there are just 
five paragraphs which discuss neural circuits.  These 
paragraphs focus on reflex arcs and neural 
convergence/divergence (pgs. 80, 82).  Bob Garrett‟s Brain 
and Behavior (2

nd
 Ed.) devotes just over a page to 

introducing neural networks (pgs. 43-44) by describing how 
some researchers have used neural networks to better 
understand the human brain and our cognitive abilities.  
Similarly, Gazzaniga, Ivry, and Mangun‟s popular Cognitive 
Neuroscience (1

st
 Ed.) text discusses neural networks by 

highlighting a few cases where neural networks have been 
used to study the mind and brain.  One notable exception 
to this pattern is Baars and Gage‟s recent textbook 
Cognition, Brain, and Consciousness (1

st
 Ed.).  Here, 

neural networks feature prominently in the chapter on 
neurons, and an accompanying appendix provides more 
detailed information.  Generally, however, while mention 
may be made that most cognitive and behavioral functions 
arise from the coordinated activity of many interconnected 
neurons, neural networks are not discussed in any greater 
depth. 
     Neglecting the algorithmic level leaves significant gaps 
in students‟ understanding of the brain.  Students 
commonly wonder, “What do sodium, ion flow, and action 
potentials have to do with perception, thinking, and 
emotion?  What does it mean for a neuron to „process 
information‟?  How is neurophysiology relevant to 
psychology?”  The foundational idea of neuroscience, that 
the mind can be understood by studying the brain, is left 
underdeveloped. 
     Neural networks bridge neurophysiology with 
psychology by enabling 1) a redescription of neural 
processing in information processing terms, and 2) 
demonstrations of how collections of information 
processors give rise to more overtly cognitive phenomena.  
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The latter is particularly important.  Because Interactions 
between neurons are highly non-linear, understanding the 
physiology of a single neuron sheds little light on the 
functioning of networks of neurons.  Indeed, the brain is 
paradigmatic of a complex system, in which information 
processing functions are emergent rather than 
programmed.  Emergent phenomena conform to the 
mantra, “the whole is greater than the sum of the parts” 
(see demonstrations below for examples).  Complexity 
theorist Stuart Kaufman describes such systems as 
providing “order for free” (Kaufman, 1995).  Without 
exploring precisely how this order (viz., information 
processing) can be provided for free (viz., as a result of 
non-linear neural interactions), a large explanatory gap will 
remain between the neuron and the brain. 
     My basic goals in conducting the demonstrations below 
are twofold: 1) to demystify brain function by illustrating 
how relatively complex processes can emerge from the 
interaction of simple elements, and 2) to dramatize this 
emergence by having students take on the role of a 
neuron, wherein they have no idea why they are enacting 
their prescribed role (viz., they have no knowledge of the 
larger goal of the network they constitute), but nonetheless 
are integral components in producing a relatively 
sophisticated product.  In other words, students enact a 
debunking of the homuncular fallacy.  While not necessary 
in a lower level course (e.g., Introductory Psychology), in 
upper level Neuroscience courses, I embed these 
demonstrations in a larger introduction to neural networks.  
Students are first given an information processing 
description of neural functioning, followed by a brief primer 
on the “integrate-and-fire” neural model, as outlined below. 
 

MATERIALS AND METHODS 
Individual neurons may be described as “detectors” (see 
O‟Reilly and Munakata, 2000).  Accordingly, the firing of a 
single neuron announces the presence of (detects) some 
set of input conditions, much like an “idiot light” in a car 
(Cummins and Poirier, 2004).  For example, the seat-belt 
light on a car dashboard is either on or not, indicating that 
the seat belt is either plugged in or not.  The gas light 
comes on when a certain threshold of fuel level has been 
crossed.  In a home, a smoke detector fires if a certain 
level of smoke is present.  Likewise, if a neuron receives 
sufficient excitatory input, it will fire.  What an individual 
neuron detects depends on which neurons it is connected 
to and at what strength they are connected. 
     In an “integrate-and-fire” neural model, this firing 
threshold may be implemented by a step activation 
function (a sigmoid function is more biologically realistic, 
but step functions are easier to compute).  A neuron first 
sums together all its excitatory and inhibitory inputs 
(integrates) and then passes that sum through an 
activation function, which determines the output of the 
neuron.  With a step activation function, the neuron will fire 
if the integration of inputs to the neuron surpasses some 
threshold, and will not fire otherwise (in an all-or-none 
fashion, like an action potential).  Equations 1 and 2 
summarize this two-step integrate-and-fire neural model.  
NET represents the net input to an output neuron (j), 

summing, for all inputs (i), the product of the input activity 
(x) of an i

th
 neuron and the weight (w) between the i

th
 and 

j
th 

neurons.  Weights correspond to the synaptic strength 
between two neurons and can range continuously from -1 
(representing a strong inhibitory connection) to 1 
(representing a strong excitatory connection).  ACT takes 
NET as an input, and determines the output based on the 
threshold value. 
 

(Eq. 1)  NETj = xiwijfor all i 
 

(Eq. 2)   ACTj= 0 if NETj< threshold 
1 if NETj> threshold 

 

     The particular function (mapping between input(s) and 
output(s)) computed by a neural network can be modified 
by changing the weights between neurons and/or their 
firing thresholds.  By changing the set of neurons whose 
activity is required for the output to fire, these modifications 
may alter what an output neuron detects. 
 
Demonstration 1 
As a first example, consider a neural network consisting of 
just three neurons, two constituting an “input layer,” which 
both project to a single “output” neuron, as in Figure 1.  
The firing threshold of the output neuron is set at 0.5, and 
the weights between each input-output pair are also set to 
be 0.5.  Assume that the activity of input neurons is binary 
(0=off, 1=on).  With two input units, there are four 
combinations of activation values.  The conditions under 
which the output neuron will fire can be determined by 
constructing a truth table (Table 1).  The activation of the 
output neuron is determined by plugging the activation 
values of the input neurons into Eqs. 1 and 2.  For the 
particular pattern of weights and threshold in Figure 1, the 
output neuron will fire whenever any input is on, but will not 
fire if both inputs are off.  This is the “inclusive-or” function. 
     This truth table (Table 1) can be derived in class by 
having students enact the neural network in Figure 1.  To 
do this, the instructor should select three students.  Each 
student will represent a neuron that either “fires” or is 
silent.  Firing is indicated by the student either raising a 
particular sign, or their hand (this demonstration will be 
articulated assuming a sign).  Students should be arranged 
into a triangular structure as in Figure 1.  Each student 
should then be given a single note card with a particular 
set of instructions and a sign to hold up (for reasons that 
will become clear, ask the students to read their 
instructions, but not the sign they have been given): 
 

- Student 1 (Input Layer) 
Instructions: 

If your shoulder is tapped, raise your sign and then tap 
the shoulder of the person directly in front of you. 

Sign:  
“Sally had a burger.” 

- Student 2 (Input Layer) 
Instructions: 

If your shoulder is tapped, raise your sign and then tap 
the shoulder of the person directly in front of you. 

Sign:  
“Sally had a Coke.” 
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- Student 3 (Output Layer) 

Instructions: 
If your shoulder is tapped, raise your sign. 

Sign: 
 “Sally had a burger OR a Coke.” 
 

     The instructor can now conduct four tests to see how 
this student neural network responds.  In the first test, the 
instructor taps the shoulder of one input student-neuron.  
That student will then raise their sign and tap the student in 
front of them, who will respond by raising their sign.  The 
instructor or another student can then enter a 1 under the 
“Input1” column, a 0 under the “Input2” column, and a 1 
under the Output column of a truth table on the white 
board.  In the second test, the instructor taps the other 
input student-neuron, which will have the same effect of 
producing a response in the output student-neuron.  Now 
enter a 0 under Input1, a 1 under Input2, and a 1 under 
Output.  In the third test, the instructor taps both input 
student-neurons, which will also cause an output response.  
Finally, if the instructor does nothing, there should be no 
output neural activity, and so 0s can be entered under 
Input1, Input2, and Output. 
     For students watching this demonstration, the logical 
relationship between inputs and output should be fairly 
clear.  The output (“Sally had a burger OR a Coke”) fires 
when either one or both of the propositions (“Sally had a 
burger”, “Sally had a Coke”) is true (indicated by the firing 
of that input neuron).  However, for the students enacting 
this computation, they will not know what function they 
helped implement.  Since they have not read their signs, 
they simply raise their sign or do not, depending on if they 
received a tap.  This is appropriate, since no single neuron 
in the brain “knows” the larger computations in which it 
participates.  Asking students to share their instructions 
with the class, and then questioning them about what they 
think they were doing will dramatize this point.  Again, 
while the student-neurons do not know the information-
processing role they played in the large network, the 
audience will.  This demonstrates emergence: clueless 
neurons following relatively simple instructions were 
integral to the production of a more complex function.  That 
function is not reducible to the activity of any single neuron, 
but rather arises because of the coordinated activity of all 
the components (that is, the “whole is greater than the sum 
of its parts;” there is no “homunculus” in the brain). 
     Note that the particular values of the weights and 
threshold are not important, only the relationship between 
them matters.  Thus, if the weights were increased to 0.9, 
as was the threshold, this network would still compute the 
inclusive-or function.  Students often have difficulty 
appreciating this point initially, and so it may be necessary 
to repeat it with each demonstration.  Because information 
processing in the brain is emergent, relationships take 
center-stage. 
     Note also that this algorithm for computing inclusive-or 
was implemented with a very different substrate than the 
brain uses (tapping people vs. electrochemical neurons).  
Indeed, any physical/biological setup in which the relations 
on the instruction cards obtain can be said to implement 
the inclusive-or algorithm.  If a system could be 

constructed out of bubble-wrap, whereby the popping of 
one bubble systematically caused the popping of some 
other bubble(s), then that bubble-wrap system is a type of 
information processing device.  This underscores that the 
algorithmic level is indeed distinct from the 
implementational level of analysis. 
 

 
 

Figure 1.  Neural network which computes the “inclusive-or” 
function.  Weights (W) refer to the synaptic strength connecting 
either the first of second input unit to the sole output unit. 

 
Input1 Input2 Output 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

Table 1.  Truth table for “inclusive-or” function.  0 = off/false, 1 = 
on/true. 

 
Demonstration 2 
A second neural network demonstration enacts the “and” 
function.  As mapped in Table 2, the output neuron is 
active here if and only if both inputs are on.  To implement 
this, the threshold of the output neuron is elevated from 0.5 
to 1.0 (Figure 2). 
 

 
 
Figure 2.  Neural network which computes the “and” function.  
Weights (W) refer to the synaptic strength connecting either the 
first of second input unit to the sole output unit. 
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Input1 Input2 Output 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

Table 2.  Truth table for the “and” function.  0 = off/false, 1 = 
on/true. 

 
     Here again, three students should come to the front of 
the class and get in the formation depicted in Figure 2.  
Now students receive new instructions and signs: 
 
- Student 1 (Input Layer) 
Instructions: 

If your shoulder is tapped, raise your sign and then 
tap the outside shoulder of the person in front of 
you. 

   Sign: 
 “Sally had a burger” 
 
- Student 2 (Input Layer) 
Instructions: 

If your shoulder is tapped, raise you sign and then 
tap the outside shoulder of the person in front of 
you. 

   Sign: 
 “Sally had a Coke” 

 
- Student 3 (Output Layer) 
Instructions: 

If BOTH of your shoulders are tapped, raise your 
sign.  Otherwise, do nothing. 

Sign: 
 “Sally had a burger AND a Coke” 
 
By executing the same four combinations of input activity 
as in Demonstration 1, the rest of the class will clearly see 
that this network implements the “and” function.  Once 
again, the student-neurons will not have much insight into 
the larger function they enacted. 
     To reiterate the importance of thinking relationally (and 
as a test for comprehension), students may be asked to 
come up with a different set of weights and threshold 
values that would also produce the “and” function. 
 
Demonstration 3 
A third neural network demonstration may be conducted to 
introduce students to two additional elements: inhibitory 
connections and “hidden” layers.  Students sometimes 
have difficulty conceiving what role inhibition might play in 
the brain; this demonstration gives an example of one 
function, “exclusive-or,” which requires inhibition.  
Exclusive-oris also a function that cannot be computed with 
just the two layers of neurons used in Demonstrations 1 
and 2.  Incidentally, this limitation of a two-layer network 
was pointed out in 1969 by Marvin Minsky and Seymour 
Papert, halting much neural network research until the mid-

1980s.  To compute exclusive-or, three layers of neurons 
are required: an input layer, a “hidden” layer (so-called 
because the activity of neurons in this layer is not directly 
manipulated, as with the input neurons, nor is their output 
activity necessarily visible, as with the output neurons), and 
an output layer. 
     In the exclusive-or function, the output neuron will fire if 
one of the input neurons is active, but not if both are active 
(Table 3).  For this demonstration, five students need to be 
organized into the formation illustrated in Figure 3.  Notice 
that there are two types of arrows between neurons in 
Figure 3, representing excitatory and inhibitory 
connections.  To enact these connections, student-neurons 
in the input layer will produce two types of actions if they 
are tapped: tapping the student-neuron in front of them 
(representing an excitatory connection) and resting a hand 
on the shoulder of the person diagonal to them 
(representing an inhibitory connection).  The activity of 
student-neurons in the hidden layer will, in turn, depend on 
the type of inputs they receive. 

 
Input1 Input2 Output 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

Table 3.    Truth table for “exclusive-or” function.  0 = off/false, 1 = 

on/true. 

 
The instructions and signs to be given to each student-
neuron are as follows: 
 
- Student 1 (Input Layer) 
   Instructions: 

If your shoulder is tapped: 

1) with your outside hand, tap the shoulder of the 
person directly in front of you, raise your sign, 
and then 

2) with your inside hand, rest it on the shoulder of 
the person diagonal to you and leave it there. 

   Sign: 
“Sally had a burger” 

 
- Student 2 (Input Layer) 
   Instructions: 

If your shoulder is tapped: 
3) with your outside hand, tap the shoulder of the 

person directly in front of you, raise your sign, 
and then 

4) with your inside hand, rest it on the shoulder of 
the person diagonal to you and leave it there. 

   Sign: 
“Sally had a Coke” 

 
- Students 3 & 4 (Hidden Layer) 
   Instructions: 

You will receive one of three possible signals: a) 
you will feel nothing, b) you will feel a tap on your 
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shoulder, or c) you will feel a tap on one shoulder 
and a hand resting on the other shoulder. 
a) If you feel nothing, DO NOTHING. 
b) If you feel a tap on your shoulder BUT DO 

NOT feel a hand resting on the other shoulder 
(wait a couple seconds to be sure), tap the 
shoulder of the person in front of you. 

c) If you feel a tap on your shoulder AND a hand 
resting on your other shoulder (wait a couple 
seconds to be sure), DO NOTHING. 

 
- Student 5 (Output Layer) 
Instructions: 

If your shoulder is tapped, raise your sign. 
   Sign: 
 “Sally had EITHER a burger OR a Coke.” 
 

 
 
Figure 3.  Neural network which computes the “exclusive-or” 

function.  Weights (W) refer to the synaptic strength connecting 
neurons.  Lines with arrowheads denote excitatory connections 
(and have positive weight values), whereas lines with ball heads 
denote inhibitory connections (and have negative weight values). 
 

     Again, the instructor should go through the four 
combinations of input activity to determine how the output 
student-neuron responds.  As a comprehension test (either 
in class or on a test), the instructor may “lesion” one of the 
hidden layer neurons, and ask students to work out how 
the truth table they previously derived would be changed 
by this deletion. 
 

DISCUSSION 
The preceding demonstrations are rooted in the work of 
McCulloch and Pitts (1943), who first articulated how small 
networks of neurons may implement logical functions.  
Logical functions form the basis of modern computing.  
While computers and brains clearly have significant 
differences, pointing out this parallel to students may help 
them better understand how neurons could participate in 
computationally sophisticated processes.  These 
demonstrations begin with the metaphor of a neuron as 
detector, and enact how relatively simple two and three-
layer networks of neurons implement a few logical 
functions.  Since McCulloch and Pitts pioneering work, it 
has been shown that a three-layer neural network 

(consisting of input, hidden, and output layers) can 
compute any continuous function, and a four-layer network 
(with two hidden layers) can compute any computable 
function (Cybenko, 1988).  Thus, most neural networks, 
like standard computers, are so-called “Universal 
Computers.”  With the “exclusive-or” network, students are 
brought up to the level of architectural complexity that can 
compute most functions.  This parallel between the brain 
and the computer can help students conceptually bridge 
the implementation level (e.g., neurons, electronic 
components) with the computational level (e.g., object 
recognition, Excel).  While computers may be technically 
mysterious, they are not usually considered to be 
metaphysically mysterious.  Linking the information 
processing of neurons, as demonstrated above, to 
computers in this way, then serves to demystify brain 
function. 
     These demonstrations necessarily abstract away from 
biological realism.  For example, real neurons are noisy, 
not perfectly silent in the absence of stimulation.  A sigmoid 
function is also a more realistic activation function than a 
step-function.  In a sigmoid function, increasing excitatory 
input above threshold will increase the rate of action 
potentials, until some upper-limit of saturation is reached.  
Simulations with a high degree of neurophysiological 
realism require significant computational resources (in 
terms of memory and processing time), which severely 
limits the ability to also explore interactions between 
neurons.  Nonetheless, to the extent that any model is 
useful, key processes hypothesized to be responsible for 
the overall functional dynamics of a system will be 
extracted and explored.  For neurons, non-linearity is 
paramount.  Non-linearity enables neurons to be effective 
detectors, and non-linearity underlies the complex 
information processing that can emerge from collections of 
interacting neurons.  While the specific algorithm executed 
by an actual neural network in the brain is an empirical 
question (see O‟Reilly and Munakata, 2000 for many 
examples), the three demonstrations detailed here provide 
a minimal set with which to bridge the implementational 
and computational levels of the brain. 
     These three demonstrations have been used in several 
classes, ranging from an introductory psychology class to 
an upper level neuroscience class.  In all cases, the 
demonstrations accomplish the goal of helping to demystify 
the brain.  They also engage students in material that 
many (particularly in an introductory class) may not find 
very interesting.  In an upper-level class, these 
demonstrations introduce students to neural networks 
more generally.  However, students usually require a fair 
amount of repetition and practice manipulating networks 
(e.g., by changing weight and threshold values, and 
determining the consequences of lesioning) before they 
are able to fully comprehend and articulate its dynamics.  
Students typically have little history in thinking about 
neurons from an information-processing perspective, and 
often need time to appreciate the importance of 
relationships between neurons.  Nonetheless, these 
relatively simple demonstrations provide a vehicle to teach 
students how the electrochemical processing of neurons 
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relates to the information processing dynamics of the brain.  
The amount of time an instructor chooses to spend on the 
demonstrations depends on his/her goal.  One or more of 
them can be done very quickly as a simple demonstration, 
or they could serve as the centerpiece for a larger 
discussion spanning several class periods.  Through them, 
students should come to have a better understanding and 
appreciation of how neurophysiology connects with the 
high-level descriptions of brain processing given in 
cognitive and systems neuroscience. 
 

REFERENCES 
Baars BJ, Gage NM (2007) Cognition, brain, and consciousness: 

Introduction to cognitive neuroscience.  New York: Academic 
Press. 

Breedlove SM, Rosenzweig MR, Watson NV  (2007) Biological 
Psychology: An introduction to behavioral, cognitive, and 
clinical neuroscience (5th Ed.). Sunderland, MA: Sinauer 
Associates, Inc. 

Cummins R, Poirier P (2004) Representation and indication.  In: 
Representation in Mind (Staines P, Slezak P eds), pp21-40. 
Elsevier. 

Cybenko G (1988) Continuous valued neural networks with two 
hidden layers are sufficient. Technical report, Department of 
Computer Science, Tufts University, Medford, MA. 

Garrett B (2009) Brain and behavior: An introduction to biological 
psychology (2nd Ed.). Los Angeles, CA: Sage. 

Gazzaniga MS, Ivry RB, Mangun GR (1998) Cognitive 
neuroscience: The biology of the mind. New York, NY: Norton 
& Co. 

Kaufman S (1995) At home in the universe: The search for the 
laws of self-organization and complexity. New York, NY: Oxford 
University Press. 

Marr D (1982) Vision: A computational investigation into the 
human representation and processing of visual information. 
New York, NY: Henry Holt & Co., Inc. 

McCulloch WS, Pitts W (1943) A logical calculus of the ideas 
immanent in nervous activity. Bull Math Biophys 5:115-137. 

Minsky M, Papert S (1969) Perceptrons. Cambridge, MA: MIT 
Press. 

O‟Reilly RC, Munakata Y (2000) Computational explorations in 
cognitive neuroscience: Understanding the mind by simulating 
the brain. Cambridge, MA: The MIT Press. 

Pinel JPJ (2006) Biopsychology (6th Ed.). New York, NY: Allyn & 
Bacon. 

 
Received August 03, 2009; revised December 09, 2009; accepted 
December 12, 2009. 
 
Address correspondence to:  Dr. Christopher J. May, Life Sciences 
Department, 100 N. East Ave., Carroll University, Waukesha, WI 53186  
Email: cmay@carrollu.edu 

 
 
 
 
 
 
 
 
 
 

Copyright © 2010 Faculty for Undergraduate Neuroscience 
 

www.funjournal.org 


