The Journal of Undergraduate Neuroscience Education (JUNE), Summer 2015, 13(3):A234-A243
Supplementary Material for article by Stowasser et al.

ERG Analysis — Matlab Scripts, User Guide

1. Introductions

The scripts ERGAnalysis_SinglePulses.m and ERGAnalysis_Flicker.m assist in analyzing ERG data by finding data points
that are useful for the data analysis such as analyzing on-transients, maximal photoreceptor responses, off-transients,
baseline recovery and finding the critical flicker fusion frequency. The text in the PDF file needs to be pasted into MATLAB
.m files. Make sure that this process does not add new lines into the code. In order to apply any of the scripts, recorded
data first needs to be exported with the recording software (in our case AD Instruments) into MATLAB format, and then
loaded into MATLAB (The MathWorks Inc.). The scripts generate several figures and save all settings and analyzed data
automatically as a .mat file within a result folder that is automatically generated by the scripts.

The script ERGAnalysis_SinglePulses.m assists in analyzing individual ERG responses. Typically these result from
stimulating the eye with relatively long lasting and clearly separated light pulses in which concurrent stimuli arrive after
the response has recovered from previous stimuli. To use this script you can record as many responses as you like within
each ‘data block’. The script ERGAnalysis_Flicker.m assist in analyzing ERG responses to relatively high frequency pulses
and assists in finding the critical flicker fusion frequency. To be able to use this script, record each stimulus train as
separate ‘data block’ (stop the recording after each train and start the recording again before the next stimulus train).

Both programs will find important points, the specific meanings of which vary between species and stimulus
conditions. Note that in not all cases all computed points are meaningful. For example, some points are designed to find
on and off transients that are observed in flies but often are absent from other recordings. Therefore it is important that
the user carefully evaluates his/her data to determine which of the points are most meaningful for the desired analysis.

2. Load the datainto MATLAB

First, export the recorded data in MATLAB format (.mat) using the recording software and load the data into MATLAB, for
instance by simply dragging the file into the MATLAB workspace window or command line window.

3. Necessary variables and accepted data formats

After loading the data, there should be several variables available in the workspace window of MATLAB, not all of which
however are needed for this analysis. You can use the following command in the command line to check the format of a
variable: >> whos VariableName

An example of the command line that you then will see is:
>> whos data
Name Size Bytes Class Attributes

data 1x20356286 162850288 double

List of necessary variables and their formats:

Name Size Class
data 1xN double Nis the total number of data points that were collected in the trial
data contains the stimulus and recording data of all blocks
datastart 2xN double N isthe number of data blocks, the first row contains the start indices of the response
data blocks the second row contains start indices of the stimulus data blocks
dataend 2xN double has the same format as datastart but holds the data ending indices
of the response and stimulus data blocks

samplerate 2xN double has the same format as datastart but holds the sample rates

4. How to initiate and run the scripts

The programs are organized to analyze each ‘data block’ individually. To do so first open either script in MATLAB and
scroll to the section entitled ‘Initiation’. This section contains several variables that you can change to adjust the program
to your need. To get started you need to assign the correct block number to variable blocknumber. You find this variable
under: ‘a’. This variable defines which block (recording sequence) is analyzed. A list and description of all variables that
you might want to adjust is below. Finally run the script by clicking on the green triangular ‘run’ symbol of the editor
window. Note that you can run the script multiple times without reloading your raw data.

a. blocknumber: determines which recording sequence is being analyzed.
b. savedata: if this variable is set to false then the data will not be saved, while if it is set to true, all data will be saved.

c. stim.scale: determines how big the binary stimulus is displayed on the figures.
stim.shift: determines where (relative to the response) the stimulus is displayed.
In both scripts these variables are needed in step 3.2. Change these variables if you need to adjust the appearance of
the stimulus in the figures.

d. response.w_smooth: In both scripts this variable is needed in step 4 and determines the window size that is used for a
moving average to smooth the raw data (response.raw) and compute response.smoothed. The larger the window
size, the stronger the data is smoothed. NOTE: You will lose information if the window size is too large.

e. point_1.w_average: is the number of data points that are averaged.
In ERGAnalysis_singlePulses.m in step 6.1 it determines how many data points of response.smoothed will be
averaged just before each stimulus onset to compute each point_1.average of point 1.

In ERGAnalysis_Flicker.m in step 6.1.1. and 6.1.2 it determines how many data points of response.smoothed will be
averaged just before the first stimulus onset to compute the first point_1.average of point 1.

f. These variables are needed in ERGAnalysis_singlePulse.m in step 6.3. to compute point 3a, and point 3c.
point_3a.w_average, point_3b.w_avergae and point_3c.w_average: number of data points of response.smoothed
that are averaged to compute point_3a.average, point_3b.average and point_3c.average respectively.
point_3b.skip: In step 6.3.c it determines how many data points will be skipped after stimulus onset to compute

. This variable allows the program to find the most negative point in the sustained ERG response, even if
there is a more negative point tightly following the onset of the stimulus onset.

g. These variables are needed in both scripts in step 6.4 to compute point 4
point_4.window: In ERGAnalysis_singlePulses.m the variable determines the number of data points that will be
included after the end of the stimulus when searching for point 4 (minimum response value of response.smoothed)
after each stimulus offset. In ERGAnalysis_Flicker.m this variable only applies to the last stimulus offset. This point is
useful if there is a negative transient signal after the stimulus is terminated.
point_4.w_average: This variable determines how many data points of response.smoothed will be averaged to
compute point_4.average.

h. point_5.window: In both scripts this variable is needed in step 6.5 to compute point 5. In ERGAnalysis_singlePulses.m
the variable determines the number of data points that will be included after the end of the stimulus when searching
for point 5 after each stimulus offset. In ERGAnalysis_Flicker.m this variables only applies to the last stimulus offset.

2

This point is useful if there is a positive transient signal after the stimulus is terminated.

5. Data analysis output

The scripts generate several figures and store these figures with all data in a result directory which is called:
“results_block_N” where N is the block number.

5.1. figure_rawdata: rawdata

stimulus and raw response of block:1

stimulus and raw response of block:5

01k

raw response
stimulus, max:4.07, min:0

-0.04 011

-0.12
-0.06

response
response

-0.131

raw response
stimulus, max:3.43, min:1.39

-0.08 L0.14

-0.1

_l -0.16 -

017k 1 L L L L 1 1

time(s) time(s)

The first figure that is generated shows the raw data of the response (response.raw) and plots the stimulus (stim.plot)
below it. The figure on the left is an example generated with the script ERGAnalysis_SinglePulses.m and the one on the
right is an example generated with the script ERGAnalysis_Flicker.m. The figure legend indicates the maximum and
minimum values that were used in the stimulus.

5.2 figure_stim_onoff: smoothed data with stimulus on and offsets

stimulus, raw & smoothed response, and pulse on- & offsets raw & and pulse on- & offsets

2002l P stimulus

smoothed response

raw response, block:5

| . v 011k | % stimulus onsets (100)

-0.04 ‘ + stimulus offsets (100)
012}

-0.06 -
stimulus
/ raw response, block:1
\ / - smoothed response

response

response

-0.08 stimulus onsets (1) el
(stimulus offsets (1)
0.16 |-
0.1
047
-0.12 -0.18
L 1 1 1 1 1
2 4 6 8 10 12 14 16 18 1 2 3 4 5 6
time(s) time(s)

The second figure shows the original response (response.raw) in blue, the smoothed response (response.smoothed) in
green, the stimulus (stim.plot) in black and data points that mark the beginning and end of the stimulus as red and
magenta stars respectively. The figure on the left shows an example generated by the script ERGAnalysis_SinglePulses.m
and on the right is an example generated by the script ERGAnalysis_Flicker.m. In order to better keep track of the stimuli,
the number of onsets and offsets are indicated in the figure legend (in brackets).

5.3 figure_points: generated by ERGAnalysis_SinglePulses.m: points of interest

stimulus, smoothed response, and useful data points

-0.02 -

-0.04 }
(7] stimulus
2 006t response smoothed, block:1
3 - O pointt
g point 2
= { point3a
-0.08 |- point 3b
o point 3¢
v point4
point5
0.1 '—J—‘ point 6 (0)
-0.12
) L L) L " L L L
2 4 6 8 10 12 14 16 18

time(s)

This figure shows response.smoothed in blue, stim.plot in black, and the points 1 through 6 in various colors (see figure
legend).

point 1:is the average response value of response.smoothed just before the stimulus onset, point_1.w_average
determined how many data points were averaged. We suggest using this value as the baseline value as it
immediately precedes the onset of the stimulus.
point 2: is the maximum response value of response.smoothed between stimulus onset and offset.
This point is useful to evaluate on-transients for species in which they exist (e.g. flies).
point 3a: is the average minimum response value of response.smoothed between stimulus onset and offset,
point_3a.w_average determined how many data points were averaged. This point is potentially useful as the
strongest response value (manifested as the most negative response) of the photoreceptor.
:is also an average minimum response value of response.smoothed between stimulus onset and offset, but
this time it is possible to exclude a set number of points at the beginning of the sequence (as defined in
point_3b.skip), point_3b.average determined how many data points were averaged. This point can be used to
evaluate the sustained photoreceptor response even if there is an overshoot at the beginning (as in our example).
point 3c: is the average response value of response.smoothed at the time of the end of the stimulus. In some cases this
is the most informative point to calculate the sustained photoreceptor points, point_3b.average determined how
many data points were averaged. This point can also be used as the baseline for calculating off-transient sizes.
point 4: is the average minimum response value of response.smoothed within a specified time period (defined by
point_4.window) following the end of the stimulus. The variable point_4.w_average determined how many data
points of response.smoothed were averaged for this point.
point 5: is the average maximum response value of response.smoothed within a window specified as for point 4. This
point could be used to evaluate a transient positive signal that follows the end of the stimulus. The variable
point_5.window determined how many data points after stimulus offset were included in the search and
point_5.w_average determined how many data points were averaged.
point 6: indicates when the baseline value (point_1.average) is first recovered after the end of each stimulus.
The number in brackets shows if the baseline was recovered and how often the baseline was recovered if the trace
contains multiple stimuli. In our case, the baseline was not recovered so the number is zero and the point is absent
from the graph. Had the baseline recovered, this number would be 1.

5.4 figure_points_v1 and figure_points_v2: generated by ERGAnalysis_Flicker.m: points of interest version 1/version 2

points of interest version 1

stimulus
response smoothed, block:s

o1l point 1 version 1
O point2
QO point 3 version 1
point4
O points
% point6 (1)

response

-0.18 = | | | | I | |
1 2 3 4 5 6 7
time(s)

points of interest version 2

stimulus

response smoothed, block:5
point 1 version 2

point2

point 3 version 2

point4

point5

point6 (1)

Q00

*0O

o

"J\y"'«n CORTIFR
AR onn CRRRERNT TS EEr AL
LM OO AAANAARNANG annan YL AL A
Vol atannanaty AN PN I oAty s
S
Sy

“"”,n“nn»}nnnnnn
AN RRnAN UL
o ll"g."‘!‘.!éﬁ“'j!}.!'!‘!@!-‘;u.-)‘-.b\.u |

i)

25 "

response

08~ | | | | | | 1

1 2 3 4 5 6 7
time(s)

These figures show the response.smoothed in green, the response.average in blue, the stimulus in black, and points 1

through 5 as described below. To assess if photoreceptors follow the stimulus it is necessary to evaluate the figures of
both versions. As long as one of the two versions consistently displays points 1 and 3, photoreceptors tend to follow the
stimulus. However if there are failures in both versions, then photoreceptors are starting to fail following the stimulus (as
illustrated in Figure 10 of the manuscript).

point 1: the first data point of point 1 is the average response value just before the beginning of the stimulus where
point_1.w_average determined how many data points of response.smoothed were averaged. All following data
points of point 1 are maximum response values of response.smoothed (as specified below).

point 3: are minimum response values of response.smoothed.
There are two versions in which point 1 and point 3 are found. One or the other version should find consistent
values as long as the response continues to follow the stimulus. The two versions are necessary because due to a
delay in photoreceptor response the stimulus end can precede the strongest response. Depending on the
magnitude of this delay relative to the stimulus frequency, maximum/minimum responses occur either between
the end of two consecutive stimuli or between the beginning of two consecutive stimuli. Version 1 searches for
maximum responses between two consecutive stimulus ends and minimum responses between two consecutive
stimulus beginnings. Version 2 does the opposite (it searches for maximum responses between two consecutive
stimulus beginnings and minimum responses between two consecutive stimulus endings). In this example version
2 worked better than version 1, in which points are inconsistent. Note that flicker fusion data should be
examined closely for instances in which photoreceptors start to skip stimuli. This can be done easily by zooming
into the resulting figure.

point 2: is the maximum response value of response.smoothed between the first two stimulus onsets. This point is
useful to calculate on transients if they exist.

point 4: is the average minimum response value within a window right after the end of the last stimulus.
The variable point_4.window determines how many data points after stimulus offset are included in the search.
The variable point_4.w_average determines how many data points of response.smoothed are averaged.

point 5: is the average maximum response value of response.smoothed within a window right after the end of the last
stimulus. The variable point_5.w_average determines how many data points are averaged and the variable

5

point_5.window determines how many data points are included in the search.

point 6: is the first time when point_1.v_1.average(1) (baseline) is reached after the ending of the stimulus. The number
in the brackets indicates if the original baseline was reached again at the end of the recording (1: it was reached,
0: it was not reached).

5.2 Available Variables and the content of results.mat

After running the scripts or after loading results.mat into the workspace of MATLAB, there are a variety of variables
available for further data analysis. To access the variables, simply double click on them. A variable window will then open.
If the variable is a struct such as data, it will show the content of the struct (such as a series of arrays). For any variable
that is an array, or a single value such as blocknumber, clicking it will display a spreadsheet that shows the values. You
then can copy the values of the spreadsheet for instance into a program like Excel for further data analysis. The following
section summarizes available variables and their meanings.

5.2.1 Available variables when running the script ERGAnalysis_SinglePulse.m

Workspace

Name Value
blocknumber: is the number of the block that was analyzed

blocknumber 1
©| figure_points

o/ figure_rawdata

o figure_stim_onoff
| point_1

| point_2

point_3a
peint_3b

| point 3¢ 1x1 struct

result_directory: is the name of the folder into which all files were saved
savedata: determines if the data is saved, 1 -> is saved, 0 -> is not saved

rawdata: is a struct that holds the raw data that was initially imported
into MATLAB, as illustrated in the figure.

rawdata
data: holds the raw recorded data FE 1 struct with 5 fields

| point_4 1x1 struct
| point_5 1xd struct
| point 6 1y

dataend: holds the block end indices

Field Value avedota
datastart: holds the block start indicesljj R 1414348774 double response : .
! S e e o result_directory results_block_1
samplerate: holds the sample rates bj dataend [293484,858452,13734... | savedata 1
[datastart [1,586969,1129937,16... £ stim 1 struct
H samplerate [10000,10000,10000,1...
aod titles 239 char

point_1:is a struct that holds all variables of point 1. I

point_1
w_average: isthe number of data points that were averaged of [E] 11 struct with 4 fields
response_smoothed before each stimulus onset to Field Val
e alue
compute value =
. . [] w_average 5
value: is the average response value of w_average data points before 2 hie -0.0281
each stimulus onset FH index 22229
index: is the data index of value ijj time 2.2229
time: is the real time of value |
point_2
point_2:is a struct that holds all data of point 2. 1| 1 struct with 5 fields
value: is the maximum value of response.smoothed between !,Five’d Nolue
the stimulus on and offset. Ei value -0.0083
, . . index 22500
time: is the real time of value tﬂ s 22500
index: is the data index of value ljj delay 0:0268
H magnitude 0.0199

delay: is the time between the first stimulus onset and time

magnitude: is the difference between value (which is point_2.value) and point_1.value
of the same stimulus pulse. In many cases this directly
describes the size of an on transient.

point_3a: is a struct that holds all data of point 3a. point_3a

|| 1x1 struct with 6 fields

w_average: the number of data points of response.smoothed ‘ Field Value
around index that are averaged to compute average [w_average 51
. . . - value -0.0772
value: is the minimum value of response.smoothed between stimulus EE indes Bt
on and offset (] average -0.0771
, . . H time 24183
index: is the data index of value il magnitude 0,048

time: is the real time of value !

average: is the average of w_average data points of response.smoothed around index

magnitude: is the difference between value (which is point_3a.value) and point_1.value of the same stimulus pulse.
In many cases this is a good description of the magnitude of the sustained photoreceptor response

point_3b: is a struct that holds all data of m—
point_3b

@ 1x1 struct with 7 fields

w_average: the number of data points that are averaged as for point 3a

time: is the real time of value
magnitude: is the difference between value (which is point_3b.value) and point_1.value of the same stimulus pulse.
In many cases this is a good description of the magnitude of the sustained photoreceptor response

.. Field Value
skip: is the number of data points that will be skipped after stimulus onset - -
5 w_average
value: is the minimum value of response.smoothed between skip data points Eskip 40000
. . [-0.0673
after stimulus onset and stimulus offset. s
t_;g index 62503
index: is the data index of value] average -0.0673
) . time 6.2503
average: is the average response value of response.smoothed as for point 3a Ei inagritude -0.0301

7 point_3c

point_3c: is a struct that holds all data of point 3c. : o
|E| 11 struct with 6 fields

w_average: the number of data points that are averaged as for point 3a Field Value
, . . n 51
index: is the data index of value e
index 72231

value: is the value of response.smoothed just before stimulus offset Evalue -0.0661

. . average -0.0660
average: is the average response value of response.smoothed as for point 3a H time g 72931
time: is the real time of value H magnitude -0.0379

magnitude: is the difference between value (which is point_3c.value) and point_1.value of the same stimulus pulse.
In many cases this is a good description of the magnitude of the sustained photoreceptor response

point_4: is a struct that holds all data of point 4. point_4
|E| 1xd struct with 9 fields
window: is the number of data points that are included after stimulus offset Field Value
w_average: the number of data points that are averaged as for point 3a window 50000
. .. el . w_average 2
value: is the minimum value of response.smoothed within a window of value J -0.0903
data points after stimulus offset. index 73369
. X . time 7.3369
index: is the data index of value delay 01137
average -0.0903
7 magnitude_1 -0.0621

e mmidbda D nnl4n

time: is the real time of value
delay: is the time between stimulus offset and time
average: is the average response value of response.smoothed as for point 3a
magnitude_1: is the difference between average (which is point_4.average) and point_1.average of the same
stimulus pulse. This describes the total change in magnitude between the baseline and the lowest point
(frequently the off transient).
magnitude_2: is the difference between average (which is point_4.average) and point_3c.average of the same
stimulus pulse. This often is a good quantification of the off transient.

point_5: is a struct that holds all data of point 5. point 5
|£| 1 struct with 8 fields

window: is the number of data points that are included

. Field Value
after stimulus offset -
. . window 5000

w_average: the number of data points that are averaged as for point 3a w_average 51
value: is the maximum value of response.smoothed within window Iv:c'i”ei ;322953

data points after stimulus offset average -0.0654
, . . ti 7.2369
index: is the data index of value me

delay 0.0137

average: is the average response value of response.smoothed as for point 3a magnitude_1 -0.0373

time: is the real time of value

delay: is the time between the last stimulus offset and time

magnitude_1: is the difference between average (which is point_5.average) and point_1.average of the same
stimulus pulse. This is useful to determine the magnitude between the innitial baseline reading and a
maximum that occurs after the stimulus has terminated.

magnitude_2:is the difference between point_5.average and point_3c.average of the same stimulus pulse. This is
useful to determine the magnitude between the end of the sustained photoreceptor response, and a
maximum that occurs after the stimulus has terminated.

point_6: is a struct that holds all data of point 6. If this point does not exist, point_6
its variables (except for reachedbaseline) will hold NaN (not a number) |CEl 1 struct with 5 fields
Field Value
reachedbaseline: indicates if and after how many stimuli point_1.value | [] cichedbaseline 0
(baseline) was reached if the bock contains more 1] index NaN
than one stimulus. Ei;:u: s:z
index: is the data index of value - delay NaN
value: is the response value of response.smoothed for the first time
when baseline was reached after each stimulus offset
time: is the real time of value
delay: is the time between the last stimulus offset and time
response

|E] 1x1 struct with 5 fields

response: is a struct that holds all data that is related to the response traces. Field Value
w_smooth 50
raw: holds the raw response data of the analyzed block raw 1x213928 double
num_of_points: is the number of data points of the analyzed block "f”m-°f-P°i”t5
time: is the real time of the block time
smoothed

w_smooth: is the window size to compute smoothed.

smoothed: is the moving average of raw

stim: is a struct that holds all data that is related to the stimulus traces.

raw: is the raw stimulus trace of the analyzed block

max: is the maximal stimulus value of the block

min: is the minimum stimulus value of the block

binary: is the stimulus in binary format
scale: defines by how much binary will be scaled to prepare

the stimulus to be plotted
scaled: is the binary stimulus after scaling as defined by scale

response value to plot the stimulus
plot: is scaled after shifting as defined by shift

onset: is a struct that holds all stimulus onset data
offset: is a struct that holds all stimulus end (offset) data

The structs onset and offset hold the variables:
index: are indices of all stimulus on/offsets
time: are the times of each index
num: is the number of stimulus on/offsets

value: is the value of response.smoothed at time

5.2.2 Available variables when running the script ERGAnalysis_Flicker.m

The following variables are exactly the same as when
running the script ERGAnalysis_SinglePulses.m:

blocknumber
result_directory
rawdata
response
savedata

stim

Field
H scale
shift
raw
max
+ min
+ rounded
= norm
H scaled
shift: defines by how much scaled is shifted relative to the minimum H plot
£ onset
£| offset
stim | stim.offset } stlm | stim.onset
stim.offset stim.onset
Field Value L’:}:&Id Value
E index 72232 H index 22232
1 num 1
value -0.0661 H value -0.0282
{ time 7.2232 t time 22232
Workspace
Name Value
H blocknumber 5
] figure_points_vl 1x1 Figure
figure_points_v2 1x1 Figure
@| figure_rawdata 1x1 Figure
@| figure_stim_onoff 1x1 Figure
£ point_1 1xd struct
£/ point_2 1xd struct
£/ point_3 1xd struct
£| point_4 1xd struct
£| point_5 1xd struct
£| point_6 1xd struct
£l rawdata 1xd struct
£| response 1xd struct

ave result_directory

"results_block_5'

The following variables are somewhat different from the SinglePulses script described above:

point_1:is a struct that holds all data of all point 1.

w_average: number of data points of response_smoothed that | point_1
were averaged before the first stimulus onset to B8 10 stiuct with 3 fields
compute value(1) _
v_1:is a struct that holds all data of point 1 version 1 ,';:f,EId Malue
v_2:is a struct that holds all data of point 1 version 2 :d WeaEIRge 1‘0000
Elvi 1x1 struct
jﬂ v2 Ix1 struct

value: are response values of all point 1
index: are data indices of all value
time: is the real time of all value

version 1: value(1), the first value within the array, is the average of w_average data points of response_smoothed
just before the first stimulus onset. All other value are the maximum value of response.smoothed
between two consecutive stimulus offsets.

version 2: value(1), the first value within the array, is the same as in version 1. All other value are the maximum value
of response.smoothed between two consecutive stimulus onsets.

point_1 | point_1lv_2 | point1 point_1.v 1
peoint_1.v_2 peint_1.v_1

Field Value Field Value
7 value 1x99 double Hj value 1x99 double
index 1x99 double Hj index 1x99 double
H time 1x99double [time 1x99 double

point_2:is a struct that holds all data of point 2. e
point_2

[£| 1x1 struct with 5 fields

value: is the maximum value of response.smoothed between
the first stimulus onset and the second stimulus offset.

Field Value

H value -0.0923

H index 14898

1 time 0.7449

H delay 0.0079

H magnitude -8.5111e-04

index: is the data index of value

time: is the real time of value

delay: is the time between the first stimulus onset and time

magnitude: is the difference between point_1.v_1.value(1) (baseline
before stimulus onset)and value

point_3:is a struct that holds all data of point 3 point_3
[E] 1 struct with 2 fields

v_1: holds all data of point 3 version 1
v_2: holds all data of point 3 version 2

Each of the structs v_1 and v_2 holds the variables:

value: are the response values of response.smoothed of all point 3
index: is the data indices of all value
10

time: is the real time of all value
magnitude: is the difference b/w value (point_3.value) and point_1.value of the same stimulus pulse and
version. It is the difference b/w the maximal and minimal response value of each stimulus pulse.

version 1: value are the minimum value of response.smoothed between two consecutive stimulus onsets.
version 2: value are the minimum value of response.average between two consecutive stimulus offsets.

| point3 | point 3.1 1 | point_3 | point_3.xv_2 3

point_3.v_1 point_3.v_2

Field Value Field Value
| value 1x99 double H value 1x99 double
] index 1x99 double index 1599 double
] time 1x99 double] time 1x99 double
| magnitude 1x99 double Fﬁ magnitude 1x99 double
point_4: is a struct that holds all data of point 4. e
point_4
window: number of data points that are included when || 1 struct with 7 fields
searching for point 4 right after the last stimulus offset Field = Value
value: is the minimum value of response.smoothed within window ST
window 5000
data points after the last stimulus offset. w_average 2
index: is the data index of value | value -0.1302
time: is the real time of value I index 114745
delay: is the time between the last stimulus offset and time 1 time 3.J313
. . delay 0.0252
w_average: is the number of data points of response.smoothed]
average -0.1302
around index that are averaged to compute average.
average: is the average of w_average data points of response.smoothed
around index
point_4 peint_5
point_5: is a struct that holds all data of point 5. [E] 151 struct with 5 fields

window: is the number of data points that are included when
searching for point 5 right after the last stimulus offset

value: is the maximum value of response.average within window
data points right after the last stimulus offset

index: is the data index of value

Field Value

H window 20000
H value -0.0971
1 index 134203
-H time 6.7102
H delay 0.9981
time: is the real time of value

delay: is the time between the last stimulus offset and time —

point_6 \
|| 10 struct with 5 fields

point_6: is a struct that holds all data of point 6. If this point does not exist, Field Value
its variables (except for reachedbaseline) will hold NaN (not a number) |1 index 147096
] time 7.3548
reachedbaseline: indicates if baseline (point_1.v_1.value(1)) was reached |1 value -0.0922
after the end of the stimulation -H delay 16428

index: is the data index of value 1 reachedbaseline -

value: is the response value of response.smoothed for the first time

11

when baseline was reached after the end of the stimulation
time: is the real time of value
delay: is the time between the last stimulus offset and time

6. Trouble shooting, the meaning of error messages that you might get

The scripts contain several error traps. These traps protect you from accidentally crashing the programs. The following
explains the meaning of the error messages (in red) which will be displayed in the command window if one of these error
traps terminated the script to keep it from crashing.

the number of stimulus onsets and offsets are not equal, check stimulus trace for artifacts

This error means that the number of stimulus beginnings and endings that were detected by the script is unequal. One
reason for this could be that the recording was stopped before the end of the last stimulus. It could also be that the raw
stimulus recording contains large artifacts so that the script falsely accepted one or multiple of these artifacts as a stimulus
beginning or ending. If you get this error, look at your raw stimulus recording to find out what happened. If you stopped
the recording before the ending of the last stimulus, you could remove your last incomplete response recording. If there
are large artifacts, you need to find a way to remove these artifacts or you could use another stimulus recording if the
recording was taken with the exact same timing (the time of the beginnings and endings of the stimulus must be exactly
the same).

point_1.w_average precedes the beginning of the recording
This error means that point_1.w_average is too large.

point_3b.skip is too large
This error means that the variable point_3b.skip is too large. Choose a smaller value so that the starting point for
searching for does not exceed the ending of the stimulus.

point_4.window is too large for pulse:N or point_4.window exceeds the end of the recording
If you get this error choose a smaller point_4.window so that the window within which the script searches for point 4 will
not exceed the beginning of the next stimulus or the ending of the recording.

point_5.window is too large for pulse:N or point_5.window exceeds end of recording

If you get this error choose a smaller point_5.window so that the window within which the script searches for point 5 will
not exceed the beginning of the next stimulus or the ending of the recording.

12

% ERG ANALYSIS Single Pulses

% This script assists in analyzing ERG responses to individual or low

% frequency light pulses. The script finds six points for each light pulse,
% makes three figures, and saves all data as described in the user guide.
It can be applied after the data is exported and loaded into

MATLAB as described in the user guide.

% INITIATION

%First, the script clears all data of a previous run except for the rawdata
if exist('point_1')

clear -regexp ~point ~fig response stim blocknumber savedata;
end

sNext, there are several values that can be adjusted.
%Please see the user guide for detailed explanations.

%a. This variable defines which block is analyzed.
blocknumber=1;
%b. If this variable is set to:
% true: all data will be saved
% false: data will not be saved
savedata = true;
%C. These variables are needed in step 3.2 to optimally plot the stimulus.
stim.scale = 100;% scales stim.binary
stim.shift = 0.02;% shifts the stim.scaled
%d. This variable is needed in step 4.
response.w_smooth=100; S%window size for moving average
%e. This variable is needed in step 7.1
point_1l.w_average=5000; % number of averaged data points
%f. This variable is needed in step 7.3, 7.4, and 7.5
point_3a.w_average = 51; % number of averaged data points
point_3b.w_average = 51; % number of averaged data points
point_3c.w_average = 51; % number of averaged data points
point_3b.skip = 1000; % minimum number of data points that are between the
%onset of the stimulus and point 3b.
%g. This variables are needed in step 7.6
point_4.window = 500;% window size
point_4.w_average = 2;% number of averaged data points
%h. This variable is needed in step 7.7
point_5.window = 1000;% window size
point_5.w_average = 51

% COMPUTATIONS DONE BY THE SCRIPT

% 1. It collects the relevant original data in a struct and clears
% all original data that is not needed

if exist('dataend') %collects the original data in a struct
rawdata.data = data;
rawdata.datastart = datastart;
rawdata.dataend = dataend;
rawdata.samplerate = samplerate;
rawdata.titles = titles;

clear -regexp ~data ~com “range “unittext samplerate blocktimes titles...
firstsampleoffset tickrate;

% 2. It extracts the raw data

% 2.1 This extracts the raw response data, the number of data points, and

% real time of the block which is calculated from the sample rate

response.raw = rawdata.data(rawdata.datastart(1,blocknumber):rawdata.dataend(1,blocknumber));
response.num_of_points=length(response.raw);
response.time=(1:response.num_of_points)*(1/rawdata.samplerate(blocknumber));

% 2.2 This extracts the raw and the max and min stimulus
stim.raw=rawdata.data(rawdata.datastart(2,blocknumber): rawdata.dataend(2,blocknumber));
stim.max = max(round(stim.raw)); S%maximum stimulus value of the block

stim.min = min(round(stim.raw)); %minimum stimulus value of the block

% 3. the stimulus is prepared so that we can easily find stimulus on and
% offsets and it looks nice on the figures

3.1 It forces the stimulus to be full integers of either @ or 1 (binary)
so that it will be easier to find stimulus on and offsets
NOTE: If the raw stimulus has large artifacts this might not work
Check if the stimulus is in the figure raw_data.fig is a clean
square wave as expected. If not, then you need to find a way to
remove artifacts.

9° 90 o° o o of

stim.binary=round(stim.rawx10);
stim.binary = stim.binary - min(stim.binary);
stim.binary=round(stim.binary/max(stim.binary));%stimulus in binary

% 3.2 It then prepares the stimulus for the figure.
stim.scaled = stim.binary/stim.scale; %scales the stimulus
stim.plot = stim.scaled +(min(response.raw)- stim.shift);% shifts it

4. the raw response data is then smoothed to remove noise. This is
done by computing the moving average. For that, we defined the
window size, which determines how strongly the data will be smoothed.

T P P P

=1;
= ones(1,response.w_smooth)/response.w_smooth;
response.smoothed=filter(b,a, response.raw); %smoothed response data
clear a b;

% 5. It finds stimulus on and offsets and related values

% 5.1 It finds the data index at which there is a stimulus on or offset
j=1
k=1;
for i=1l:response.num_of_points-1
if stim.binary(i) < stim.binary(i+1)% finds stimulus onsets
stim.onset.index(j)=i;
j =3+
elseif stim.binary(i)> stim.binary(i+1)% finds stimulus offsets
stim.offset.index(k)=1i
k = k+1;
end
end
clear j k

% 5.2 it finds values that are related to stimulus onsets

stim.onset.num = length(stim.onset.index); % number of stimulus onsets

stim.onset.value = response.smoothed(stim.onset.index);%response values at stimulus onsets
stim.onset.time = response.time(stim.onset.index);% stimulus onset times

% 5.3 it finds values that are related to stimulus offsets

stim.offset.num = length(stim.offset.index);%number of stimulus offsets

stim.offset.value = response.smoothed(stim.offset.index);%response values at stimulus offsets
stim.offset.time = response.time(stim.offset.index);% stimulus offset times

%error trap: in case the number of stimulus onsets is not to equal the

% number of stimulus offsets. This can happen if the stimulus trace contains

% very large artifacts or perhaps the recording was terminated before

% the last stimulus offset. Check the raw stimulus trace and see what happened.

if not(stim.offset.num == stim.onset.num)

error('myApp:argChk', 'the number of stimulus onsets and offsets are not equal, check stimulus trace for artifacts');
return; end;
%end of error trap

% 6. It extracts point 1 through point 5
point_6.reachedbaseline = 0;

for i=l:stim.onset.num

% 6.1 point_1 is the response value just before each stimulus onset

%Error trap: point_l.w_average precedes the beginning of the recording
%or the ending of the previous stimulus
if (stim.onset.index(i)-point_1.w_average<0)
error('myApp:argChk', 'point_l.w_average precedes the beginning of the recording');
return; end;

point_1.average(i)=mean(response.smoothed((stim.onset.index(i)-point_1.w_average):(stim.onset.index(i))));
point_1.index(i) = stim.onset.index(i)-round(point_1.w_average/2);
point_1.time(i)= response.time(point_1.index(i));

% 6.2 point_2 is the maximum response between stimulus on and offset.
[point_2.value(i),J]=max(response.smoothed(stim.onset.index(i):stim.offset.index(i)));
point_2.index(i)=stim.onset.index(1i)+J;
point_2.time(i)=response.time(point_2.index(i));
point_2.delay(i)=response.time(J);
point_2.magnitude(i)= point_2.value(i)- point_l.average(i);
clear J;

% 6.3.a point_3a is the minimum response value b/w stimulus on and offset
[point_3a.value,J]=min(response.smoothed(stim.onset.index(i):stim.offset.index(i)));
point_3a.index(i) = stim.onset.index(i)+J;
i_begin = point_3a.index(i)-round(point_3a.w_average/2);

i_end = point_3a.index(i)+round(point_3a.w_average/2);
point_3a.average(i) = mean(response.smoothed(i_begin:i_end));
point_3a.time(i) = response.time(point_3a.index(i));
point_3a.magnitude(i)=point_3a.average(i)- point_1l.average(i);%
clear i_begin i_end J;

% 6.3.b point_3b is the minimum response value b/w a certain number of
% points after stimulus onset and stimulus offset
i_begin = stim.onset.index(i)+point_3b.skip

%Error trap: point_3b.skip exceedes stimulus offset, make it smaller
if (i_begin >= stim.offset.index(i))
error('myApp:argChk', 'point_3b.skip is too large');
return; end;
%end of error trap

[point_3b.value,J]=min(response.smoothed(i_begin:stim.offset.index(i)));
point_3b.index(i) = stim.onset.index(i)+point_3b.skip+J;

i_begin = point_3b.index(i)-round(point_3b.w_average/2);

i_end = point_3b.index(i)+round(point_3b.w_average/2);
point_3b.average(i) = mean(response.smoothed(i_begin:i_end));
point_3b.time(i) = response.time(point_3b.index(i));
point_3b.magnitude(i)= point_3b.average(i)- point_1l.average(i);
clear i_begin i_end J;

% 6.3.c point_3c is the minimum response value just before stimulus offset
point_3c.index(i) = stim.offset.index(i)-1
point_3c.value(i) = response.smoothed(point_3c.index(i)-1);
point_3c.average(i)= mean(response.smoothed((point_3c.index(i)-point_3c.w_average):point_3c.index(i)));
point_3c.time(i) = response.time(point_3c.index(i));
point_3c.magnitude(i)=point_3c.average(i)- point_1l.average(i);

% 6.4 point_4 is the minimum response value b/w the end of the stimulus
% and a defined number of data points thereafter as defined
% by point_4.window.

%Error trap: point_4.window exceeds stimulus onset of the next pulse
or the end of the recording
1f (i<stim.offset.num)
if((stim.offset.index(i)+point_4.window)>stim.onset.index(i+1))
error('myApp:argChk', strcat('point_4.window is too large for pulse:',num2str(i)));
return; end; end;
if((stim.offset.index(i)+point_4.window)>response.num_of_points)
error('myApp:argChk', 'point_4.window exceeds the end of the recording');
return; end;
%end of error trap

[point_4.value(i),J]=min(response.smoothed(stim.offset.index(i):(stim.offset.index(i)+point_4.window)));
point_4.index(i) = stim.offset.index(i)+J;
point_4.time(i)=response.time(point_4.index(i));
point_4.delay(i) = response.time(J);

i_begin = point_4.index(i)-round(point_4.w_average/2);

i_end = point_4.index(i)+round(point_4.w_average/2);
point_4.average(i) = mean(response.smoothed(i_begin:i_end));
point_4.magnitude_1(i)=point_4.average(i)-point_1l.average(i);
point_4.magnitude_2(i)=point_4.average(i)-point_3c.average(i);
clear i_begin i_end J;

% 6.5 point_5 is the maximal response value b/w the end of the stimulus
% and a defined number of data points thereafter as defined
% by point_5.window.

%Error trap: point_5.window exceeds stimulus onset of the next pulse
or the end of the recording

1f (i<stim.offset.num)

if((stim.offset.index(i)+point_5.window)>stim.onset.index(i+1))

error('myApp:argChk', strcat('point_5.window is too large for pulse:',num2str(i)));

return; end; end;
if((stim.offset.index(i)+point_5.window)>response.num_of_points)

error('myApp:argChk', 'point_5.window exceeds end of recording');
return; end;
%end of error trap

[point_5.value(i),J]=max(response.smoothed(stim.offset.index(i):(stim.offset.index(i)+point_5.window)));
point_5.index(i) = stim.offset.index(i)+J;

i_begin = point_5.index(i)-round(point_5.w_average/2);

i_end = point_5.index(i)+round(point_5.w_average/2);
point_5.average(i) = mean(response.smoothed(i_begin:i_end));
point_5.time(i)=response.time(point_5.1index(i));
point_5.delay(i) = response.time(J);
point_5.magnitude_1(i)=point_5.average(i)-point_1l.average(i);
point_5.magnitude_2(i)=point_5.average(i)-point_3c.average(i);
clear i_begin i_end J;

% 6.6 point_6 is the first time when baseline is reached after stimulus
% offset
J = find(response.smoothed(stim.offset.index(i):end)>=point_1.average(i));
if isempty(J)

point_6.1index(i) = NaN(1);

point_6.value(i) = NaN(1);

point_6.time(i) = NaN(1);

point_6.delay(i) = NaN(1);
else

point_6.index(i) = stim.offset.index(i)+J(1);

point_6.time(i) = response.time(point_6.index(i));

point_6.value(i) = response.smoothed(point_6.index(i));

point_6.delay(i) = response.time(point_6.index(i)-stim.offset.index(i));
point_6.reachedbaseline = point_6.reachedbaseline+1;

end
clear J;

end
clear i ;

MAKE FIGURES

© o0

% It makes a figure of the smoothed and averaged response data, and

% point_1 through point_6

%figure_points = figure('numbertitle','off', 'name', 'points of interest');

title('stimulus, smoothed response, and useful data points');

xlabel('time(s)'); % x axis label

ylabel(strcat('response'));% y axis label

hold on;

plot(response.time,stim.plot, 'black');

plot(response.time(response.w_smooth:end), response.smoothed(response.w_smooth:end),'b");

plot(point_1.time,point_1.average,'ro', 'markersize',9,'Linewidth',2);

plot(point_2.time, point_2.value,'go', 'markersize',9,'Linewidth',2);

plot(point_3a.time,point_3a.average, 'mo', 'markersize',9, 'Linewidth',2);

plot(point_3b.time,point_3b.average,'yo', 'markersize',9, 'Linewidth',2);

plot(point_3c.time,point_3c.average, 'ko', 'markersize',9, 'Linewidth',2);

plot(point_4.time,point_4.average,'co', '‘markersize',9, 'Linewidth',2);

plot(point_5.time,point_5.average, 'bo', ‘markersize',9, 'Linewidth"',2);

plot(point_6.time,point_6.value,'rx', 'markersize',10, 'Linewidth',1.5);

hold off;

legend ('stimulus',strcat('response smoothed, block:',num2str(blocknumber)),...
'point 1', 'point 2','point 3a','point 3b','point 3c','point 4',...
‘point 5',strcat('point 6 (',num2str(point_6.reachedbaseline),')'));

% It makes a figure of the stimulus, raw response data, smoothed response
%

%

% data and stimulus on and offsets

figure_stim_onoff = figure('numbertitle','off', 'name’, 'smoothed data with stimulus on and offsets');
title('stimulus, raw & smoothed response, and pulse on- & offsets');

xlabel('time(s)'); % x axis label

ylabel(strcat('response'));% y axis label

hold on;

plot(response.time,stim.plot, 'black');

plot(response.time, response.raw,'b');

plot(response.time(response.w_smooth:end), response.smoothed(response.w_smooth:end),'qg");
plot(stim.onset.time,stim.onset.value,'rx', 'markersize',10, 'Linewidth',1.5);
plot(stim.offset.time, stim.offset.value,'mx', 'markersize',10, " 'Linewidth',1.5);

hold off

legend ('stimulus',strcat('raw response, block:',num2str(blocknumber)),...
'smoothed response',...
strcat('stimulus onsets (',num2str(stim.onset.num),')'),...
strcat('stimulus offsets (',num2str(stim.offset.num),')"));

% It makes a figure of the stimulus and the raw response data

figure_rawdata = figure('numbertitle','off','name','rawdata');

title(strcat('stimulus and raw response of block:',...
num2str(blocknumber)));

xlabel('time(s)'); % x axis label

ylabel('response');% y axis label

hold on

plot(response.time, response.raw,'b');

plot(response.time,stim.plot, 'black');

hold off

legend ('raw response',strcat('stimulus, max:',...
num2str(stim.max),"', min:',num2str(stim.min)));

% SAVES ALL DATA

%It makes a directory into which all figures and results will be saved.
%The name of the directory is: results_block_N where N is the blocknumber

if savedata

result_directory = strcat('results_block_',num2str(blocknumber));
mkdir(result_directory);

%this saves all data that is in the workspace to a .m file.
save(strcat(result_directory, '\results_block',num2str(blocknumber)));

end

ERG ANALYSIS Flicker

This script assists in analyzing ERG recordings when the eye was
stimulated with light pulses of high frequency. It is recommended to be
used when the frequency is too high to yield proper analysis with the
single pulse script. The script finds five points, makes four figures,
and saves all data as described in the user guide. The script can be
applied after the data is exported and loaded into MATLAB as described
in the user guide.

o o° o of o° o of of oF of

INITIATION

o° of of

%First, the script clears all data of a previous run except for the rawdata
if exist('point_1')

clear -regexp ~point ~fig response stim blocknumber savedata;
end

%Next, there are several values that can be adjusted.
%Please see the user guide for detailed explanations.

%a. This variable defines which block is analyzed.
blocknumber=5;
%b. If this variable is set to:
% true: all data will be saved
% false: no data will not be saved
savedata = true;
%C. These variables are needed in step 3.2 to optimally plot the stimulus.
stim.scale = 100;% scales stim.binary
stim.shift = 0.02;% shifts the stim.scaled
%d. This variable is needed in step 4.
response.w_smooth=50; %window size for moving average
%e. This variable is needed in step 7.1.1 and 7.1.2
point_l.w_average=1000; % number of averaged data points
%g. These variables are needed in step 7.4
point_4.window = 5000;% window size
point_4.w_average = 2;% number of averaged data points
%h. This variable is needed in step 7.5
point_5.window = 5000;% window size
point_5.w_average = 51;

% COMPUTATIONS DONE BY THE SCRIPT

% 1. It collects the relevant original data in a struct and clears
% all original data that is not needed

if exist('dataend') %collects the original data in a struct
rawdata.data = data;
rawdata.datastart = datastart;
rawdata.dataend = dataend;
rawdata.samplerate = samplerate;
rawdata.titles = titles;
end

clear -regexp ~data ~com “range “unittext samplerate blocktimes titles...
firstsampleoffset tickrate;

2. It extracts the raw data

%

%

% 2.1 This extracts the raw response data, the number of data points, and

% real time of the block which is calculated from the sample rate

response.raw = rawdata.data(rawdata.datastart(1,blocknumber):rawdata.dataend(1,blocknumber));
response.num_of_points=length(response.raw);
response.time=(1:response.num_of_points)x(1/rawdata.samplerate(1));

% 2.2 This extracts the raw and the max and min stimulus

stim. raw=rawdata.data(rawdata.datastart(2,blocknumber): rawdata.dataend(2,blocknumber));
stim.max = max(round(stim.raw)); %maximum stimulus value of the block

stim.min = min(round(stim.raw)); %minimum stimulus value of the block

o
% 3. the stimulus is prepared so that we can easily find stimulus on and
% offsets and it looks nice on the figures

3.1 It forces the stimulus to be full integers of either @ or 1 (binary)
so that it will be easier to find stimulus on and offsets
NOTE: If the raw stimulus has large artifacts this might not work.
Check if the stimulus in the figure raw_data.fig is a clean
square wave as expected. If not, then you need to find a way to
remove artifacts.
stim.binary=round(stim.rawx10);
stim.binary = stim.binary - min(stim.binary);
stim.binary=round(stim.binary/max(stim.binary));%stimulus in binary

0° o of of of of

% 3.2 It then prepares the stimulus for the figure.
stim.scaled = stim.binary/stim.scale; %scales the stimulus
stim.plot = stim.scaled +(min(response.raw)- stim.shift);% shifts it

4. the raw response data is the smoothed to remove noise. This is
done by computing the moving average. For that, we defined the
window size, which determines how strongly the data will be smoothed.

T O o o° o°

=1;

= ones(1,response.w_smooth)/response.w_smooth;
response.smoothed=filter(b,a, response.raw); %smoothed response data
clear a b;

o° of
v

. It finds stimulus on and offsets and related values

% 5.1 It finds the data index at which there is a stimulus on or offset
j=1
k =1;
for i=l:response.num_of_points-1
if stim.binary(i) < stim.binary(i+1)% finds stimulus onsets
stim.onset.index(j)=i;
J o= 3+
elseif stim.binary(i)> stim.binary(i+1)% finds stimulus offsets
stim.offset.index(k)=i;
k = k+1;
end
end
clear j k

% 5.2 it finds values that are related to stimulus onsets

stim.onset.num = length(stim.onset.index); % number of stimulus onsets

stim.onset.value = response.smoothed(stim.onset.index);%response values at stimulus onsets
stim.onset.time = response.time(stim.onset.index);% stimulus onset times

% 5.3 it finds values that are related to stimulus offsets

stim.offset.num = length(stim.offset.index);%number of stimulus offsets

stim.offset.value = response.smoothed(stim.offset.index);%response values at stimulus offsets
stim.offset.time = response.time(stim.offset.index);% stimulus offset times

%error trap: in case the number of stimulus onsets is not equal to the

% number of stimulus offsets. This can happen if the stimulus trace contains

% very large artifacts or perhaps the recording was terminated before

% the last stimulus offset. Check the raw stimulus trace and see what happened.

if not(stim.offset.num == stim.onset.num)

error('myApp:argChk', 'the number of stimulus onsets and offsets are not equal, check stimulus trace for artifacts');
return; end;
%end of error trap

o

% 6. Extracts point 1 through point 5

for i=l:stim.onset.num

% finds relevant points around the first stimulus onset
if(i==1)%
% 6.1.1 point_1.v_1(1): first value is the response just before first stimulus begins

%Error trap: point_l.w_average precides the beginning of the recording
%or the ending of the previous stimulus
if (stim.onset.index(i)-point_1.w_average<0)
error('myApp:argChk', 'point_1.w_average precedes the beginning of the recording');
return; end;

)= mean(response.smoothed((stim.onset.index(1)-point_1.w_average):(stim.onset.index(1))));
) = stim.onset.index(1)-round(point_l.w_average/2);
response.time(point_1.v_1.index(1));

point_1.v_1.time(1) =
i 1): the first value is the response just before the first stimulus begins

1
1
)
% 6.1.1 point_1.v_2
point_1.v_2.value(1
point_1.v_2.index(1
point_1.v_2.time(1)

point_1.v_1.value(1);
point_1.v_1.index(1);
= point_1.v_1.time(1);

% 6.2 point_2: maximum response value b/w the first stimulus

% beginning and second stimulus ending

[point_2.value,R]= max(response.smoothed(stim.onset.index(1):stim.offset.index(2)));
point_2.index =stim.onset.index(1)+R;

point_2.time = response.time(point_2.index);

point_2.delay =response.time(R);

point_2.magnitude = point_2.value - point_1l.v_1l.value(1)

clear R;

% 6.3.1 point_3.v_1(1): is the first minimum response value version 1,
% b/w the first two stimulus beginnings
[point_3.v_1.value(1),Rl=min(response.smoothed(stim.onset.index(1):stim.onset.index(2)));

point_3.v_1.index(1) = stim.onset.index(1)+R;

point_3.v_1.time(1) = response.time(point_3.v_1.index(1));
point_3.v_1.magnitude(1)=point_3.v_1l.value(1l)- point_1.v_1.value(1);
clear R;

% 6.3.2 point_3.v_2(1): is the first minimum response value version 2,
% b/w the first two stimulus endings

[point_3.v_2.value(1),R]=min(response.smoothed(stim.offset.index(1):stim.offset.index(2)));
point_3.v_2.index(1) = stim.offset.index(1)+R;

point_3.v_2.time(1) = response.time(point_3.v_2.index(1));
point_3.v_2.magnitude(1)=point_3.v_2.value(1l)- point_1.v_2.value(1);

clear R;

% finds relevant data points after the last stimulus ends
elseif (i == stim.onset.num)
% 6.4 point_4: minimum response value after last stimulus ending

%Error trap: point_4.window exceeds stimulus onset of the next pulse

% or the end of the recording

if((stim.offset.index(i)+point_4.window)>response.num_of_points)
error('myApp:argChk', 'point_4.window exceeds the end of the recording');

return; end;

%end of error trap

[point_4.value,R]=min(response.smoothed(stim.offset.index(1i): (stim.offset.index(i)+point_4.window)));
point_4.index = stim.offset.index(i)+R;

point_4.time = response.time(point_4.index);

point_4.delay = response.time(R);

i_begin = point_4.index-round(point_4.w_average/2);

i_end = point_4.index+round(point_4.w_average/2);
point_4.average = mean(response.smoothed(i_begin:i_end));
point_4.magnitude_1 = point_4.average — point_1.v_1.value(1);
clear R i_begin i_end;

% 6.5 point_5: maximum response value after last stimulus ending
%Error trap: point_5.window exceeds stimulus onset of the next pulse
% or the end of the recording
if((stim.offset.index(1i)+point_5.window)>response.num_of_points)
error('myApp:argChk', 'point_5.window exceeds end of recording');
return; end;
%end of error trap

[point_5.value,R] = max(response.smoothed(stim.offset.index(i):(stim.offset.index(1i)+point_5.window)));
point_5.index = stim.offset.index(1i)+R;
i_begin = point_5.index - round(point_5.w_average/2);
i_end = point_5.index + round(point_5.w_average/2);
point_5.average = mean(response.smoothed(i_begin:i_end));
point_5.time = response.time(point_5.index);
point_5.delay = response.time(R);
point_5.magnitude_1 = point_5.average - point_1.v_1l.value(1);
clear i_begin i_end R;
% 6.6 point_6 is the first time when baseline is reached after stimulus
% offset
J = find(response.smoothed(stim.offset.index(i):end)>=point_1.v_1l.value(1));
if isempty(J)
point_6.index = NaN(1);
point_6.value = NaN(1);
point_6.time = NaN(1);
point_6.delay = NaN(1);
point_6.reachedbaseline = 0;
else
point_6.index = stim.offset.index(i)+J(1);
point_6.time = response.time(point_6.index);
point_6.value = response.smoothed(point_6.index);
point_6.delay = response.time(point_6.index —stim.offset.index(1i));
point_6.reachedbaseline = 1;

end
clear J;

% finds relevant data points between first and last stimulus
else

% 6.1.1 point_1.v_1: max response values b/w two consecutive stimulus beginnings
[point_1.v_1.value(i),R] = max(response.smoothed(stim.offset.index(1i):stim.offset.index(i+1)));
point_1.v_1.index(i) = stim.offset.index(i)+R;
point_1.v_1.time(i) = response.time(point_1.v_1.index(i));

clear R;

% 6.1.1 point_1.v_2: max response values b/w two consecutive stimulus endings
[point_1.v_2.value(i),R] = max(response.smoothed(stim.onset.index(i):stim.onset.index(i+1)));
point_1.v_2.index(i) = stim.onset.index(1i)+R;
point_1.v_2.time(i) = response.time(point_1.v_2.index(i));

clear R;

% 6.2.1 point_2.v_1: min response values b/w two consecutive stimulus beginnings
[point_3.v_1.value(i),RI=min(response.smoothed(stim.onset.index(i):stim.onset.index(i+1)));
point_3.v_1.index(i) = stim.onset.index(i)+R;
point_3.v_1.time(i) = response.time(point_3.v_1.index(i));
point_3.v_1.magnitude(i)=point_1.v_1.value(i)-point_3.v_1.value(i);
clear R;

% 6.2.2 point_2.v_2: min response values b/w two consecutive stimulus endings
[point_3.v_2.value(i),Rl=min(response.smoothed(stim.offset.index(i):stim.offset.index(i+1)));
point_3.v_2.index(i) = stim.offset.index(i)+R;
point_3.v_2.time(i) = response.time(point_3.v_2.index(i));
point_3.v_2.magnitude(i)=point_1.v_2.value(i)-point_3.v_2.value(i);

clear R;
end
end
clear i;
% MAKE FIGURES

%It makes a figure of the smoothed and averaged response data and
%point_1 through point_4 version 2

figure_points_v2= figure('numbertitle','off', 'name', 'points of interest version 2');
title('points of interest version 2');
xlabel('time(s)'); % x axis label
ylabel(strcat('response'));% y axis label
hold on;
plot(response.time,stim.plot, 'black');
plot(response.time(response.w_smooth:end), response.smoothed(response.w_smooth:end),'b"');
plot(point_1.v_2.time,point_1.v_2.value,'ro', 'markersize',8, 'Linewidth',1.5);
plot(point_2.time, point_2.value,'go', 'markersize',8,'Linewidth',1.5);
plot(point_3.v_2.time,point_3.v_2.value, 'mo', 'markersize',8, 'Linewidth',1.5);
plot(point_4.time,point_4.average,'co', 'markersize',8,'Linewidth',1.5);
plot(point_5.time,point_5.value, 'bo', 'markersize’',8, 'Linewidth',1.5);
plot(point_6.time,point_6.value, 'r*', 'markersize’',8, 'Linewidth',1.5);
hold off;
legend ('stimulus',strcat('response smoothed, block:',num2str(blocknumber)),...
'point 1 version 2', 'point 2','point 3 version 2',..
‘point 4','point 5',strcat('point 6 (',num2str(point_6.reachedbaseline),"')"'));

%It makes a figure of the smoothed and averaged response data and

%point_1 through point_4 version 1

figure_points_vl= figure('numbertitle','off', 'name', 'points of interest version 1');
title('points of interest version 1');

xlabel('time(s)'); % x axis label

ylabel(strcat('response'));% y axis label

hold on;

plot(response.time,stim.plot, 'black');

plot(response.time(response.w_smooth:end), response.smoothed(response.w_smooth:end),'b"');

plot(point_1.v_1.time,point_1.v_1l.value,'ro', 'markersize',8,'Linewidth',1.5);

plot(point_2.time, point_2.value,'go', 'markersize',8, 'Linewidth',1.5);

plot(point_3.v_1.time,point_3.v_l.value, 'mo', 'markersize',8, 'Linewidth',1.5);

plot(point_4.time,point_4.average, 'co', 'markersize',8,'Linewidth',1.5);

plot(point_5.time,point_5.value, 'bo', 'markersize',8,'Linewidth',1.5);

plot(point_6.time,point_6.value, 'r*', 'markersize',8, 'Linewidth',1.5);

hold off;

legend ('stimulus',strcat('response smoothed, block:',num2str(blocknumber)),...
'point 1 version 1', 'point 2','point 3 version 1','point 4','point 5',...
strcat('point 6 (',num2str(point_6.reachedbaseline),"')'));

% It makes a figure of the stimulus, raw and smoothed response data, and
% stimulus on and offsets
figure_stim_onoff= figure('numbertitle','off', 'name', 'smoothed data with stimulus on and offsets');
title('stimulus, raw & smoothed response, and pulse on- & offsets');
xlabel('time(s)'); % x axis label
ylabel(strcat('response'));% y axis label
hold on;
plot(response.time,stim.plot, 'black');
plot(response.time, response.raw,'b');
plot(response.time(response.w_smooth:end), response.smoothed(response.w_smooth:end),'g"');
plot(stim.onset.time,stim.onset.value, 'rx', 'markersize',7, 'Linewidth',1);
plot(stim.offset.time, stim.offset.value,'mx', 'markersize',7,'Linewidth',1);
hold off
legend ('stimulus',strcat('raw response, block:',num2str(blocknumber)),...
'smoothed response',...
strcat('stimulus onsets (',num2str(stim.onset.num),')"),...
strcat('stimulus offsets (',num2str(stim.offset.num),')"));

% It makes a figure of the stimulus and raw response data

figure_rawdata = figure('numbertitle','off', 'name', 'rawdata');

title(strcat('stimulus and raw response of block:',...
num2str(blocknumber)));

xlabel('time(s)'); % x axis label

ylabel('response');% y axis label

hold on

plot(response.time, response.raw,'b');

plot(response.time,stim.plot, 'black"');

hold off

legend ('raw response',strcat('stimulus, max:',..
num2str(stim.max),', min:',num2str(stim.min)))

SAVES ALL DATA

© o of

%It makes a directory into which all figures and results will be saved.
%The name of the directory is: results_block_N where N is the blocknumber
if savedata

result_directory = strcat('results_block_',num2str(blocknumber));
mkdir(result_directory);

%this saves all data that is in the workspace to a .m file.
save(strcat(result_directory, '\results_block',num2str(blocknumber)));
end

%end of script

	User Guide ERG MATLAB Scripts Revised
	ERGAnalysis_SinglePulses 2
	ERGAnalysis_Flicker 2

