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Although powerful bioinformatics tools are available for free 
on the web and are used by neuroscience professionals on 
a daily basis, neuroscience students are largely ignorant of 
them.  This Neuroinformatics module weaves together 
several bioinformatics tools to make a comprehensive unit.  
This unit encompasses quantifying a phenotype through a 
Quantitative Trait Locus (QTL) analysis, which links 
phenotype to loci on chromosomes that likely had an 
impact on the phenotype.  Students then are able to sift 
through a list of genes in the region(s) of the chromosome 
identified by the QTL analysis and find a candidate gene 
that has relatively high expression in the brain region of 
interest.  Once such a candidate gene is identified, 
students can find out more information about the gene, 
including the cells/layers in which it is expressed, the 

sequence of the gene, and an article about the gene.  All of 
the resources employed are available at no cost via the 
internet.  Didactic elements of this instructional module 
include genetics, neuroanatomy, Quantitative Trait Locus 
analysis, molecular techniques in neuroscience, and 
statistics—including multiple regression, ANOVA, and a 
bootstrap technique.  This module was presented at the 
Faculty for Undergraduate Neuroscience (FUN) 2011 
Workshop at Pomona College and can be accessed at 
http://mdcune.psych.ucla.edu/modules/bioinformatics. 
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Neuroinformatic tools are being widely used by 
neuroscientists to deduce and induce conclusions about 
genes, the nervous system, and behavior.  As 
undergraduate students enter into the increasingly 
interdisciplinary field of neuroscience, they will need to be 
conversant with a variety of resources that connect the 
fields of genetics and neuroscience.  This module 
incorporates several neuroinformatic tools in a package 
enabling students to understand how a candidate gene 
associated with a particular physical or behavioral 
phenotype might be identified.  In the process, students 
travel the same experimental road that current 
neuroscientists use to delve into databases and extract 
relevant information to both inform and to direct their 
research. 
     The entire Neuroinformatics module described here is in 
silico, and uses resources that are available at no cost on 
the web.  Students begin the project by quantifying a 
neuroanatomical phenotype using ImageJ, a free, 
downloadable program produced by the National Institutes 
of Health (NIH, 1997), in conjunction with digitized brain 
slice data obtained from the Mouse Brain Library (Rosen et 
al., 2000).  After working in small groups, the class comes 
together to “clean up” the data using multiple regression 
procedures that remove the variance due to extraneous 
variables and creates the statistical data required for a 
Quantitative Trait Locus (QTL) analysis. 
     The linchpin of this module is making the intellectual 
connection between neural phenotype and underlying 
genetic variation using WebQTL (Zhou, 2011), a free tool 
that performs QTL analysis, by linking differences in 

phenotype to loci on chromosomes that likely had an 
impact on the phenotype (Grisel, 2000).  WebQTL 
conveniently links directly to the UCSC Genome Browser 
(USCS Genome Bioinformatics Group, 2011), which allows 
students to move directly to individual loci and begin 
screening genes using a variety of criteria including 
microarray expression data provided by the genome 
browser itself, in situ hybridization analysis with the Allen 
Brain Atlas (Allen Institute for Brain Science, 2009), coding 
sequence information in NCBI’s Entrez Gene (NCBI, 
2011b), and published literature in PubMed (NCBI, 2011c). 
     As a whole this module uses several websites in 
concert to teach genetics, some neuroanatomy and 
histology, statistics, QTL analysis, molecular biology 
including in situ hybridization and microarray analysis, and 
introduces bioinformatic resources.  The modular nature of 
the project allows it to be incorporated into diverse 
classroom settings, including teaching laboratories and 
lecture-only courses, providing flexibility to meet specific 
course and institutional needs. 
 

MATERIALS AND METHODS 

Step 1:  Selecting the phenotype. 
     Brain images are obtained from the Mouse Brain 
Library.  These are the extracted and Nissl-stained brains 
of recombinant inbred mice (See Figure 1).  Recombinant 
inbreeding allows for genetic diversity across strains while 
keeping genetic diversity within strains fairly uniform.  
Recombinant inbred strains (RISs) are derived from two 
inbred F0 strains that are discrepant on the phenotype of 
interest.  By means of recombination of the chromosomes 
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during meiosis in the F1 generation, both genetic and 
phenotypic diversity across the various strains is obtained.  
Ultimately, this process derives several inbred strains that 
are each a unique combination of the F0 DNA but which 
are homogeneous within a given RIS at all alleles.  For a 
good basic background on simple inheritance, 
recombination, and inheritance of complex traits see 
Chapters 5 and 6 of Bazzett, 2008.  Details on deriving 
RISs can be obtained from Grisel, 2000 and Silver, 2008. 
 

 
 
Figure 1.  Image from the Mouse Brain Library showing Nissl-
stained brains in horizontal sections.  Olfactory bulb is outlined in 
sections in which it appears.  Also shown is a toolbar from 
ImageJ, the program that students use to quantify the size of 
olfactory bulbs. 

 
     The brains in the Mouse Brain Library come from 
individuals of both sexes and from a wide range of ages, 
body sizes, and overall brain sizes.  The phenotype 
typically used in this module is olfactory bulb size, because 
students can easily adhere to an operational definition of 
what should be measured (see our website materials).  For 
the purposes of this study, the C57BL/6J and DBA/2J 
strains were used as F0 strains due to their divergent 
olfactory bulb phenotypes.  Also, an article about 
performing a QTL analysis on olfactory bulb size has been 
published (Williams et al., 2001), so students can compare 
their data to published data. 
 
Step 2:  Quantifying the phenotype. 

     Students quantify the size of the region of interest using 

ImageJ.  Details on quantifying phenotypes such as 

olfactory bulbs can be found in the Complete User Manual, 

on the Neuroinformatics module webpage of the Modular 

Digital Course in Undergraduate Neuroscience Education 

(MDCUNE) website at http://mdcune.psych.ucla.edu/ 

modules/bioinformatics.  Generally, there is more than one 

student quantifying the region of interest for a given 

mouse, which provides a check against other students 

quantifying the phenotype in a wildly idiosyncratic fashion.  

Although multiple raters should give better measurements, 

their data may diverge especially if all raters are not rigidly 

adhering the operational definition of the phenotype.  In 

cases of divergent measurements, students convene as 

juries to determine the cause of discrepancies among their 

measurements and modify them if need be.  (Large 

amounts of error variance will work against getting 

statistically significant results.) 
 
Step 3:  Isolating the genetic contribution to 
phenotype. 
     Although the goal of this module is to examine the 
effects of genes specific to olfactory bulb size, the 
contributions of these specific genes may be obscured by 
the influence of other, previously mentioned factors.  
Consequently, it is imperative to remove the contributions 
of these other factors (sex, age, weight, and brain size) 
and control for these factors statistically via multiple 
regression.  Free software, such as Smith’s Statistical 
Package (Smith, 2011), is available on the web that will do 
this in a stepwise fashion.  When students graph the 
variance in scores as extraneous variables are 
successively controlled, they can see that error variance is 
being removed (see Figure 2). 
 

 
 
Figure 2.  Variance in scores as a function of the variables 
controlled by regression.  When students graph the original 
variance and residuals like this, they can visualize that variance 
due to extraneous factors is controlled via multiple regression. 

 
     Subsequently, once sex, age, weight, and brain size 
have been statistically controlled, students can see if there 
are still differences among RISs in the residual scores.  
This can be accomplished by using a one-way analysis of 
variance (ANOVA) with strains serving as the various 
levels.  At present, the statistical analysis program, SPSS 
(IBM, 2012), is used because it is able to handle a large 
number of levels in an ANOVA.  SPSS also returns an R

2
, 

which is an estimate of variance accounted for by strain 
and is also an estimate of the heritability of the trait (see 
Table 1).  The subsequent QTL analysis is currently 



The Journal of Undergraduate Neuroscience Education (JUNE), Fall 2012, 11(1):A119-A125     A121 
 

sensitive when at least 10% of the variance is accounted 
for by genotype, which is strain in this case (Williams, 
1998).  Some institutions may not have licenses for SPSS 
or may not have the time to incorporate full statistical 
analysis in their class.  In these cases, the raw statistical 
analysis can be done by the instructor, and then the results 
can be explored by the students in class.  This approach 
was successfully used at the College of Charleston. 
 

 
 
Table 1.  ANOVA table showing that there are still differences due 
to strain after the extraneous variables have been removed.  
Further, the R

2
 shows that the trait is sufficiently heritable for a 

QTL analysis to work. 

 
Step 4:  Performing the QTL analysis. 
     The residuals from the multiple regressions can then be 
used to perform a QTL analysis.  This analysis can be 
easily accomplished by using WebQTL (Rosen et al., 
2000).  Averages of the residuals within a given RIS are 
entered, and then WebQTL uses over 3500 markers 
(mostly micro satellites across the genome that differ 
between the F0 mice) to sort the RISs according to the F0 
DNA at a given locus.  Once sorted, the residual 
phenotypes of the various strains are then compared via 
the Likelihood Ratio Statistic (LRS) calculated at each 
marker.  If the phenotypes with the C57BL/6J DNA are 
markedly different than the RISs that possess the DBA/2J 
DNA at a given locus, the LRS will be high; if the 
respective phenotypes are roughly equal, it will be low.  
This process is performed at each of the markers that 
distinguish between the two F0 DNAs.  WebQTL displays 
the LRS as a function of these various markers on 
chromosomes 1-19 and X (see Figure 3).  (Notably, the Y 
chromosome doesn’t recombine, so this analysis cannot be 
used with genes associated with it.) 
     In Figure 3, the LRS graph gives four peaks, one each 
for chromosomes 2, 6, 14, and 17.  Although these peaks 
exceeded the “suggested” criterion (lower horizontal line), 
none exceeded the “significant” criterion (upper horizontal 
line).  Instructors should not be concerned if their students 
cannot generate data that exceed the significant level.  
Because a large number of individual comparisons are 
made (about 3500),, the alpha level for an individual 

comparison is extremely stringent, roughly  = 1.5 x 10
-5

, 
to end-up with

 
a compounded, genome-wide comparisons 

at = .05.  So, it is quite difficult for a given comparison to 
achieve the   significant level even when the null 
hypothesis is false.  Also, suggested peaks are often 
reported in the literature; QTL analysis is an initial 

exploration to reveal candidate genes that may impact the 
phenotype.  In addition, if several undergraduates are 
contributing to the measures, the error variance probably 
will be large because they will probably not all adhere to 
the same definition of the phenotype, which will work 
against obtaining significant results. 
 

 
 
Figure 3.  Output from WebQTL of the QTL analysis showing the 
Likelihood Ratio Statistic as a function of markers across 
chromosomes 1-19 and X.  In this term, students found 
suggested peaks on chromosomes 2, 6, 14, and 17, which 
suggests that genes that affected the phenotype are to be found 
in the regions of chromosomes corresponding to the peaks.  
[Source:  http://www.genenetwork.org/] 

 
Step 5:  Linking to UCSC Genome Browser. 
     WebQTL links directly to the UCSC Genome Browser, 
which displays the names of genes under the peak 
obtained after LRS analysis (Figure 4).  These names are 
linked to information on the relative expression of that gene 
in several neural regions of interest (Figure 5).  Instructors 
can use these expression data to introduce microarrays 
and explain how they work.  (For an excellent animation 
explaining microarrays see the DNA Microarray 
Methodology - Flash Animation from Davidson College, 
2001).  Students work through the list provided by the 
UCSC Genome Browser until they find one that is highly 
expressed in the region of interest.  This gene will become 
their candidate gene. 
 

 
 
Figure 4.  Screenshot from the UCSC Genome Browser listing the 
genes in the distal end of chromosome 6 corresponding to the 
peak.  These genes are hot-linked to information such as 
expression data of the gene in the region of interest.  [Source:  
http://genome.ucsc.edu/] 
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Step 6:  Linking to the Allen Brain Atlas (via UCSC 
Genome Browser). 
     Students then examine the in situ hybridization pattern 
of their candidate gene using the Allen Brain Atlas.  The 
UCSC Genome Browser links directly to the Allen Brain 
Atlas, which contains a library of in situ hybridizations done 
on mouse brains (Ramos et al., 2007).  Many genes have 
been examined in this resource and both coronal and 
sagittal views of brain sections are available.  As seen in 
Figure 6, the Allen Brain Atlas provides a reference atlas, 
in situ views, and an expression mask that allows students 
a more clear view of the brain regions that express their 
gene.  This tool allows students to examine the structures 
and cell layers within their region of interest that express 
their candidate gene.  Further, it gives students the 
opportunity to employ a brain atlas and learn some 
neuroanatomy. 

 

 
 

Figure 5.  Pastiche of screenshots from the UCSC Genome 
Browser showing expression data in various regions of interest, 
the name of a candidate gene, and hot links to obtain more 
information about this gene including the Allen Brain Atlas, Entrez 
Gene, and PubMed.  [Source:  http://genome.ucsc.edu/] 

 
Step 7:  Linking to Entrez Gene (via UCSC Genome 

Browser). 

     The UCSC Genome Browser also has a direct link to 

Entrez Gene.  Here, students are further linked to 

GenBank (NCBI, 2011a), which provides the full sequence 

as well as the coding sequence of their candidate gene.  

Instructors can use this opportunity to explain how one 

could then construct in situ probes for use in 

developmental investigations, or for quantitative 

polymerase chain reactions (PCR).  Further, if one knew 

the coding sequence, it is possible to translate it into a 

protein and make antibodies to examine the role of this 

protein in development. 

Step 8:  Linking to PubMed (via UCSC Genome 

Browser). 
     The UCSC Genome Browser also links directly to 
PubMed, which provides a list of articles about the 
candidate gene.  Students can then find out some 
information about the gene, including if it potentially played 
a role in differential development. 
 

 
 
Figure 6.  Pastiche of screenshots from the Allen Brain Atlas 
showing the in situ view in the top left panel, an expression mask 

in the bottom left panel showing degree of expression, and a view 
of the atlas for the corresponding sagittal sections in the right 
panel.  [Source:  http://www.brain-map.org/] 

 
Evaluation of Students. 
     At the College of Charleston, a series of short 
assignments were given that were modeled on the 
assignments created at UCLA.  These short assignments 
were handed in at the end of each section to ensure that 
students were staying on task, completing the module, and 
understand what they were doing.  At the end of the 
module, an individual exam was completed in class to test 
their understanding of QTL analysis and of the overall 
module.  At UCLA, students were simply given a written 
take-home exam to assess performance.  At both 
institutions, students who agreed to participate in the study 
were also assessed by taking a short pre-module 
evaluation (Pre-Test) and an identical post-module 
evaluation (Post-Test) that included questions regarding 
module content, statistical knowledge, and critical thinking.  
One item on both the Pre-Test and the Post-Test was 
excluded from analysis because the wording was 
inadvertently changed between the evaluations taken by 
College of Charleston students and UCLA students.  The 
assessment measures had IRB approval (UCLA IRB 
Exemption # 07-211). 
 

RESULTS 

This module has been successfully taught at the College of 
Charleston and UCLA.  Forty-one students from College of 
Charleston and ninety-two students from UCLA 
participated in the Pre-Test and subsequent Post-Test that 
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measured gains in content, statistical knowledge, and 
critical thinking.  Students at both institutions made 
significant strides—Post-Test scores were significantly 
higher than Pre-Test scores: F(1,131) = 209.91 p < .0001 
(Figure 7).  The Pre-Test scores did not significantly 
correlate with the grades on the module at either institution 
(Table 2), suggesting that module grades at both 
institutions reflected genuine gains in understanding rather 
than differential preparation before beginning the course.  
Grades on the module significantly correlated with the 
Post-Test scores, providing a measure of validity for the 
pre-posttest instrument.  Although College of Charleston 
and UCLA students did not significantly differ in Pre-Test 
scores, there was a significant school x Pre-Test/Post-Test 
interaction: F(1,131) = 12.18; p = .0008—UCLA students 
performed better on the Post-Test: t = 3.73; p = .0003 
(Figure 7).  Both College of Charleston and UCLA students 
showed reasonable mastery of the material even though 
different means of assessment were used at the two 
institutions. 
 

 
 
Figure 7.  Mean correct in the Pre-Test and Post-Test for College 
of Charleston and UCLA students.  Significant gains were made 
by both groups of students as a function of experiencing this 
module. 
 

 
 
Table 2.  Correlation matrix, showing the relationship between 

module grade and Pre-Test and Post-Test scores, as well as the 
relationship between Pre-Test score and Post-Test score.  * p < 
.05; ** p < .0001 
 

     Although we did not measure affective/attitudinal 

responses to this module in the Charleston students, UCLA 

students usually made positive comments about this unit 

(Grisham et al., 2010). 
 

DISCUSSION 

The data clearly show that this module worked well at both 

the College of Charleston and UCLA.  At both institutions, 
students made impressive gains on the Post-Test relative 
to the Pre-Test.  Further, since the module grades were not 
significantly correlated with the Pre-Test scores but were 
significantly correlated with the Post-Test scores, the 
change in scores can be attributed to genuine gains rather 
than differential preparedness. 
     UCLA students made larger gains than the College of 
Charleston students, but at least part of this difference was 
due to the differential emphasis on statistics.  At UCLA, a 
substantial statistics component was included in this unit: 
students had to use and understand multiple regression, 
ANOVA, a permutation test, and the LRS.  At the College 
of Charleston, students did not independently perform the 
statistical analyses.  Rather the instructor completed that 
aspect of the module and then led a student exploration of 
the results.  Removing the Pre-Test and Post-Test items 
relating to statistics attenuated this difference between the 
two schools (data not shown).  In other words, the 
difference in gains exists because UCLA students were 
taught more “toward the test” than were the College of 
Charleston students.  Although the students at the two 
institutions were assigned grades by using different 
measures, students at both institutions showed an 
adequate mastery of the material—in other words, this 
module didn’t seem beyond the grasp of students at either 
institution, and most students successfully completed the 
module at both institutions. 
     UCLA students typically find this emphasis on statistics 
one of the more challenging but valuable lessons from this 
module.  Nonetheless, some students may not have the 
background for intensive use of statistical analyses or 
analysis packages may not be available.  (Notably, free 
statistical software can be found online (Pezzullo, 2010), 
though none of these has been tested for their 
effectiveness in the Neuroinformatics module.) 
     This module is centered around QTL analysis of a 
mouse brain phenotype, but QTL analyses are also being 
performed on humans to determine the genetic bases of a 
variety of physical and behavioral phenotypes including 
ADHD (Doyle et al., 2008), IQ (Butcher et al., 2008), 
alcoholism (Grisel, 2000;), and dyslexia (Deffenbacher et 
al., 2004).  So QTL analysis has both clinical relevance as 
well as research utility, and it is an analytical technique 
with which students should have some understanding. 
     Similarly, bioinformatics tools such as the UCSC 
Genome Browser, the Allen Brain Atlas, Entrez Gene, and 
PubMed, are commonly used by neuroscientists.  Students 
studying neuroinformatics should be exposed to and have 
familiarity with these tools, since they are re-formulating 
how neuroscience, biology, and medicine are being 
approached.  The Neuroinformatics module could serve as 
a stand-alone module or as an adjunct to a genetics or 
behavioral genetics course. 
     In the module detailed in this article, the olfactory bulb 
was used as the phenotype.  However, several other brain 
phenotypes could have been used instead.  Potential brain 
phenotypes about which there are published QTL analyses 
include cerebellum size (Airey et al., 2002), corpus 
callosum area (Roy et al., 1998), striatal volume (Rosen et 
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al., 2009), cortex size (Beatty and Laughlin, 2006), 
amygdala structure (Mozhui et al., 2007), and 
hippocampus (Peirce et al., 2003; Lu et al., 2001).  
Anecdotally, there has been better success with olfactory 
bulbs as a dependent measure relative to cerebellum, 
cortex, and hippocampus.  Students are much more likely 
to obtain at least suggested peaks when using olfactory 
bulbs, probably because its anatomical limits are easier to 
define and quantify. 

 
Logistics. 
     We have endeavored to make this module easy to 
adapt by instructors at other institutions.  All the tools and 
websites employed in this exercise are free of charge to 
end-users.  In addition, while the project fits well into 
several lab periods, the individual analyses done at each 
step can easily be broken down to fit into shorter 50-75 
minute class periods within a lecture course.  Running the 
complete module in a typical Monday-Wednesday-Friday 
50-minute class schedule at the College of Charleston 
required a total of about three weeks of class time.  At 
UCLA, three 3-hour lab periods for data acquisition and 
analysis and three 1-hour lectures were characteristic to 
provide students with adequate background explanations 
and guide them in the interpretation of their data. 
     On the Neuroinformatics module webpage of the 
MDCUNE website, instructors can find the images of 
mouse brains that have been used in the unit, and data 
about each mouse (sex, age, weight, and brain size)—all 
courtesy of the Mouse Brain Library.  The Neuroinformatics 
module webpage also provides a Complete User Manual, 
PowerPoint lecture slides with voice-overs, links to videos 
of live lectures, and individual instructional tutorials on 
using ImageJ, running statistical analyses, using WebQTL, 
the UCSC Genome Browser, the Allen Brain Atlas, Entrez 
Gene, and PubMed.  Further, faculty can also access both 
multiple choice and essay exams along with grading keys 
after registering for an account with MDCUNE. 
     Students often comment in formal and informal 
feedback that they like seeing how elements that they have 
learned in isolation—genetics, statistics, brain anatomy, 
and molecular biology—can come together to create a 
unified story.  All of these materials are available to faculty 
and students to re-create this experience at their home 
institutions at http://mdcune.psych.ucla.edu/modules/ 
bioinformatics. 
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