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It is generally believed that students learn best through 
activities that require their direct participation.  By using 
simulations as a tool for learning neuroscience, students 
are directly engaged in the activity and obtain immediate 
feedback and reinforcement.  This paper describes a 
series of biophysical models and computer simulations that 
can be used by educators and students to explore a variety 
of basic principles in neuroscience.  The paper also 
suggests ‘virtual laboratory’ exercises that students may 
conduct to further examine biophysical processes 
underlying neural function.  First, the Hodgkin and Huxley 
(HH) model is presented.  The HH model is used to 
illustrate the action potential, threshold phenomena, and 

nonlinear dynamical properties of neurons (e.g., 
oscillations, postinhibitory rebound excitation).  Second, 
the Morris-Lecar (ML) model is presented.  The ML model 
is used to develop a model of a bursting neuron and to 
illustrate modulation of neuronal activity by intracellular 
ions.  Lastly, principles of synaptic transmission are 
presented in small neural networks, which illustrate 
oscillatory behavior, excitatory and inhibitory postsynaptic 
potentials, and temporal summation. 
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Teaching the basic principles of neuroscience can be 
greatly enhanced by incorporating realistic and interactive 
simulations of neural function.  Learning through 
experimentation and investigation (i.e., inquiry-based 
teaching) can enhance the student’s understanding and 
interest (Tamir et al., 1998; Haefner and Zembal-Saul, 
2004; Zion et al., 2004; van Zee et al., 2005; for review see 
National Research Council, 2000). For example, a basic 
tenet of neuroscience is that neural functions emerge from 
the interplay among the intrinsic biophysical properties of 
individual neurons within a network, the pattern of synaptic 
connectivity among the neurons, and the dynamical 
properties of the individual synaptic connections (for review 
see Getting, 1989).  The specific role(s) that any one 
process plays in the overall behavior of a network can be 
difficult to assess due to such factors as interacting 
nonlinear feedback loops and inaccessibility of the process 
for experimental manipulation.  One way to overcome this 
problem is by mathematical modeling and simulating the 
biophysical and biochemical properties of individual 
neurons and dynamic properties of the individual 
synapses.  The output of the model network and its 
sensitivity to manipulation of parameters can then be 
examined.  To do so, it is necessary to have a flexible 
neurosimulator that is capable of simulating the important 
aspects of intrinsic membrane properties, synapses, and 
modulatory processes.  Such a simulator can be a tool to 
aid students to a better understanding of the basic 
principles of neuroscience and to investigate neural 
behavior. 

Several simulators are available for realistically 
simulating neural networks (for review of neurosimulators 
see Hayes et al., 2003). However, only a few 
neurosimulators have been adapted to a teaching 
environment (e.g., Friesen and Friesen, 1995; Siegelbaum 
and Bookman, 1995; Lytton, 2002; Lorenz et al., 2004; 
Moore and Stuart, 2004; Meuth et al., 2005; Carnevale and 

Hines, 2006).  This paper describes a Simulator for Neural 
Networks and Action Potentials (SNNAP) that is well suited 
for both research and teaching environments (Ziv et al., 
1994; Hayes et al., 2003; Baxter and Byrne, 2006).  
SNNAP is a versatile and user-friendly tool for rapidly 
developing and simulating realistic models of single 
neurons and neural networks.  SNNAP is available for 
download (snnap.uth.tmc.edu).  The download of SNNAP 
includes the neurosimulator, the SNNAP Tutorial Manual, 
and over 100 example simulations that illustrate the 
functionality of SNNAP as well as many basic principles of 
neuroscience. 

This paper illustrates the ways in which several 
relatively simple models of single neurons and neural 
networks can be used to illustrate commonly observed 
behaviors in neural systems and the ways in which models 
can be manipulated so as to examine the biophysical 
underpinnings of complex neural functions.  The paper 
begins with a presentation of the most influential model of 
neuronal excitability: the Hodgkin-Huxley (HH) model 
(Hodgkin and Huxley, 1952).  The HH model describes the 
flow of sodium, potassium, and leak currents through a cell 
membrane to produce an action potential.  The HH model 
is used to illustrate several basic principles of neuroscience 
and nonlinear dynamics.  For example, simulations are 
used to examine the concepts of threshold, the 
conductance changes that underlie an action potential, and 
mechanisms underlying oscillatory behavior.  A second 
model (Morris and Lecar, 1981) is used to investigate the 
role of intracellular calcium as a modulator of neuronal 
behavior and to develop a bursting neuron model.  By 
manipulating parameters, processes that affect the 
duration and frequency of activity can be identified.  Finally, 
some basic principles of synaptic transmission and 
integration are illustrated and incorporated into simple 
neuronal networks.  For example, one of the networks 
exhibits oscillations and can be used to examine the roles 
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that excitatory and inhibitory synaptic connections can play 
in generating rhythmic activity.  The subject material and 
“virtual” laboratory exercises that are outlined in this paper 
are suitable for undergraduate and graduate courses in 
neuroscience. 
 
MATERIALS AND METHODS 
To be useful in a learning environment, a neurosimulator 
must be both powerful enough to simulate the complex 
biophysical properties of neurons, synapses, and neural 
networks and be sufficiently user friendly that a minimal 
amount of time is spent learning to operate the 
neurosimulator.  SNNAP was developed for researchers, 
educators and students who wish to carry out simulations 
of neural systems without the need to learn a programming 
language. SNNAP provides a user-friendly environment in 
which users can easily develop models, run simulations, 
and view the results with a minimum of time spent learning 
how to use the program. 

Installing SNNAP.   After downloading the snnap8.zip 
file, unzip the file and place the snnap8 folder on a local or 
remote hard drive.  SNNAP is written in the programming 
language Java, which embodies the concept of “write once, 
run everywhere.”  The computer and operating system 
independence of Java-based programs is due to the 
machine specific Java Virtual Machine (JVM) that executes 
Java programs.  To determine whether a computer has a 
JVM installed, run the command java –version from a 
command prompt, or simply try to launch SNNAP (see 
below).  If JVM is not installed, SNNAP will not run and 
JVM must be downloaded (www.javasoft.com) and 
installed.  Note, Java does not interpret blank characters in 
path names.  Thus, commonly used folders such as 
“Program Files” or “My Documents” are not appropriate for 
installing SNNAP.  Also note that European conventions 
often replace the decimal point in real numbers with a 
comma.  Java does not accept commas in real numbers, 
and thus, the default system settings of some computers 
must be modified.  For additional details, see the SNNAP 
web site.  The SNNAP download provides an extensive 
library of example simulations.  The present paper 
illustrates the ways in which some of these examples can 
be used to teach principles of neuronal function and 
suggests ways in which students can manipulate the 
models so as to gain a better understanding of neural 
function.  All of the results in the present paper were 
generated with SNNAP, and the models are provided at 
the SNNAP web site.  Additional models, which were used 
in research studies, also are available at the ModelDB web 
site (senselab.med.yale.edu/senselab/). 

Operating SNNAP.   After ensuring that JVM and 
SNNAP are properly installed, double-click on the 
snnap8.jar file to launch SNNAP.  Alternatively, type java 
–jar snnap8.jar using the command prompt with the 
active directory positioned at the snnap8 folder.  Launching 
SNNAP invokes the main-control window (Fig. 1A).  The 
main-control window provides access to the neurosimulator 
(the Run Simulation button) and to the various editors that 
are used to develop models and control aspects of the 
simulation (e.g., setting the duration of the simulation, the 

integrations time step, or specifying extrinsic treatments 
that are applied during the simulation).  For example, to 
change the potassium conductance in the HH model, first 
select Edit Formula (Fig. 1A).  This button invokes a file 
manager (not shown) that allows the user to select the 
appropriate file for editing (in this case, hhK.vdg).  Once 
the file is selected, the equation is displayed in a separate 
window (Fig. 1B).  The window displays a graphical 
representation of the equation (upper part of window) and 
values for parameters (lower part of window).  To change a 
parameter (e.g., the maximal potassium conductance, g ), 
click on the parameter with a shaded background, to open 
a dialogue box (Fig. 1C).  The dialogue box allows the user 
to enter and save a new value for the selected parameter.  
An extensive selection of examples and step-by-step 
instructions for how to construct and run simulations are 
provided in the SNNAP Tutorial Manual. 

 

 

 

Figure 1.    User-friendly interface for building models and running 
simulations.  In SNNAP, all aspects of developing a model and 
running simulations can be controlled via a graphical-user 
interface (GUI; see also Fig. 3A).  A:  The simplest way to run 
SNNAP is to double click on the snnap.jar file.  The first window 
to appear is the main control window.  Other features of the 
neurosimulator are selected by clicking on the appropriate button.  
B:  For example, clicking on the Edit Formula button invokes a file 
manager (not shown) and allows the user to select the file that 
contains the specific formula to be edited (in this case the 
hhK.vdg file).  Once selected, the formula is displayed in the 
formula editor.  The parameters in the formula are displayed with 
a shaded background.  The current values for the parameters are 
listed in the lower portion of the display.  C:  To change the value 
of a parameter, click on the parameter.  A dialog box appears and 
the user enters the new value.  The SNNAP Tutorial Manual 
provides detailed instructions for operating SNNAP.  The tutorial 
is available for download at the SNNAP website. 
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RESULTS 
SINGLE-NEURON SIMULATIONS 
Neurons are generally regarded as the fundamental units 
of computation in the nervous system.  As input-output 
devices, neurons integrate synaptic inputs to their 
dendrites, generate action potentials in response to 
sufficiently strong inputs, and transmit this electrical signal 
along their axons in the form of action potentials.  The 
action potentials invade the synaptic terminals, which 
trigger synaptic transmission to postsynaptic neurons 
(Shepherd, 2004).  At each step of the process, the neural 
information is modified and the original input signal is 
processed as it progresses through a neuron and a neural 
network.  For example, a weak input signal may be 
subthreshold for eliciting a spike and this weak signal is 
effectively filtered out of the network (see Fig. 10).  
Alternatively, two weak signals that occur in close temporal 
proximity may summate and elicit an action potential.  The 
simulations that are outlined below examine some of the 
biophysical properties of single cells and the ways in which 
electrical signals are generated. 

This section begins by presenting an influential model 
for nerve cell signaling: the Hodgkin-Huxley (HH) model 
(for a review of the HH model see Baxter et al., 2004).  
Using the HH model, the fundamental phenomenon of 
neuronal excitability is illustrated.  In addition, this section 
illustrates the roles that various parameters (e.g., ionic 
conductance) play in determining neuronal behavior.  In 
doing so, several experiments are outlined that students 
can conduct, and thereby, gain an intuitive understanding 
of the mechanistic underpinnings of neuronal function.  
This section also illustrates the ways in which terminology 
from the mathematics of nonlinear dynamics can be used 
to describe model behavior.  Finally, this section illustrates  
 

 

some ways in which more complex patterns of neuronal 
activity (e.g., oscillations and bursting) can be modeled.  A 
second model, the Morris-Lecar (ML) model (Morris and 
Lecar, 1981; see also Rinzel and Ermentrout, 1998), is 
introduced to illustrate mechanisms that underlie bursting. 

Hodgkin-Huxley Model of Neuronal Excitability.   A 
widely used model for neuronal behavior is the Hodgkin-
Huxley (HH) model (Hodgkin and Huxley, 1952), which 
earned Alan L. Hodgkin and Andrew F. Huxley the Noble 
Prize in Physiology or Medicine in 1963.  [To view 
biographical information about Hodgkin and Huxley and 
other Nobel laureates, visit the Nobel Prize web site at 
www.nobel.se/nobel.  In addition, the lectures that Hodgkin 
and Huxley delivered when they received the Nobel Prize 
were published (Hodgkin, 1964; Huxley, 1964), as well as 
informal narratives (Hodgkin, 1976; 1977 and Huxley, 
2000; 2002) that describe events surrounding their seminal 
studies.]  The HH model describes the flow of sodium and 
potassium ions through the nerve cell membrane to 
produce an all-or-nothing change in potential across the 
membrane; i.e., an action potential or spike. 

The equivalent electric circuit for the HH model is 
presented in Fig. 2A.  The circuit illustrates five parallel 
paths that correspond to the five terms in the ordinary 
differential equation (ODE) that describes the membrane 
potential (Vm, Fig. 2B).  From left to right (Fig. 2A), the 
circuit diagram illustrates an externally applied stimulus 
current (Istim), the membrane capacitance (Cm), and the 
three ionic conductances sodium ( Na ), potassium ( K ) 
and leak ( L ).  Both sodium and potassium have voltage- 
and time-dependent activation (variables m and n, 
respectively) and sodium has voltage- and time-dependent 
inactivation (variable h; Fig. 2B). 

g g
g

 
Figure 2.  Equivalent electric circuit for HH model.  A:  Hodgkin 
and Huxley pioneered the concept of modeling the electrical 
properties of nerve cells as electrical circuits.  The variable 
resistors represent the voltage- and/or time-dependent 
conductances.  (Note, conductances can also be regulated by 
intracellular ions or second messengers, see Fig. 7.)  The HH 
model has three ionic conductances: sodium ( ), potassium 

( ) and leak ( ).  The batteries represent the driving force for 
a given ionic current.  C

Nag

Kg Lg
M represents the membrane capacitance.  

Istim represents an extrinsic stimulus current that is applied by the 
experimenter.  B:  A few of the equations in the HH model.  The 
ordinary differential equation (ODE) that describes the membrane 
potential (Vm) of the model contains the ensemble of ionic 
currents that are present.  The HH model is relatively simple and 
contains only three ionic currents.  Other models may be more 
complex and contain many additional ionic currents in the ODE 
for the membrane potential (e.g. see Butera et al., 1995; Av-Ron 
and Vidal, 1999).  The ionic currents are defined by a maximal 
conductance ( g ), a driving force (Vm – Eion), and in some cases 
activation (m, n) and/or inactivation (h) functions.  These 
equations illustrate many of the parameters that students may 
wish to vary.  For example, values of g  can be varied to simulate 
different densities of channels or the actions of drugs that block 
conductances.  Similarly, values of Eion can be changed to 
simulate changes in the extracellular concentrations of ions (see 
Av-Ron et al., 1991). 
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     The HH model for a space-clamped patch of membrane 
is a system of four ODEs, 12 algebraic expressions, and a 
host of parameters.  The principle ODE of the space-
clamped HH model describes the change of voltage across 
the membrane due to the three currents, sodium (INa), 
potassium (IK), and leak (IL) currents, as well as an applied 
external stimulus current Istim (Fig. 2B).  The two ions that 
play the major role in the generation of an action potential 
are sodium (Na+) and potassium (K+).  Sodium ions exist at 
a higher concentration on the exterior of the cell, and they 
tend to flow into the cell, causing the depolarization.  
Potassium ions exist at a higher concentration on the 
interior of the cell, and they tend to flow outward and cause 
the repolarization of the membrane back to rest.  The key 
to action potential generation is that sodium activation is 
faster than the potassium activation (see Fig. 4).  At the 
resting membrane potential (-60 mV), there is a balance 
between the flow of the inward sodium current, the outward 
potassium current and the leak current. 

An ionic current is defined by several terms: a maximal 
conductance ( g ), activation (m, n), and/or inactivation (h) 
variables, which are functions of voltage and/or time 
(and/or intracellular second messenger or ions, see below), 
and a driving force (Fig. 2B).  The maximal conductance 
represents the channel density for the particular ion and 
the activation and inactivation variables describe the 
kinetics of opening and closing of the channels.  By  
 
 

  
 

changing the values of g , students can simulate the 
differential expression of ion channels in various cells types 
or simulate the actions of drugs that block ionic 
conductances (see below).  The activation and inactivation 
functions also are represented by ODEs (not shown). 

Figure 3A illustrates the overlay of four simulations in 
which Istim. was systematically increased (lower trace in Fig. 
3A).  The HH model exhibits a threshold phenomena due 
to the nonlinear properties of the model.  The first two 
stimuli failed to elicit an action potential, and thus, are 
referred to as being subthreshold.  The final two stimuli 
each elicit an action potential, and thus, are 
suprathreshold.  Note that both spikes have a peak value 
of ~50 mV, hence the spikes are referred to as all-or-
nothing. 
     One advantage of using simulations is that students 
have access to each component (parameters and 
variables) in the model.  Thus, it is possible to examine the 
mechanistic underpinnings of complex phenomena.  For 
example, the spike in the membrane potential of the HH 
model is due to a rapid activation of the sodium 
conductance, which causes the positive deflection of the 
membrane potential (Fig. 4).  Following a slight delay, the 
conductance to potassium ions increases, which causes a 
downward deflection of the membrane potential, which  
 
 
 
Figure 3.   Action potentials and threshold phenomena.  A:  
Screen shot of the SNNAP simulation window.  The upper trace 
illustrates the membrane potential of the HH model.  The lower 
trace illustrates the extrinsic stimulus currents that were injected 
into the cell during the simulations.  With each simulation, the 
magnitude of the stimulus is systematically increased in 1 nA 
increments.  The first two stimuli are subthreshold, but the final 
two stimuli are suprathreshold and elicit action potentials.  This 
figure also illustrates several features of the SNNAP simulation 
window.  To run a simulation, first select File, which invokes a 
drop-down list of options.  From this list select the option Load 
Simulation, which invokes a file manager (not shown).  The file 
manager is used to select the desired simulation (*.smu file).  
Once the simulation has been loaded, pressing the Start button 
begins the numerical integration of the model and the display of 
the results.  See the SNNAP Tutorial Manual for more details.  B:  
Phase-plane representation of the threshold phenomena.  The 
data in Panel A are plotted as time series (i.e., Vm versus time).  
Alternatively, the data can be plotted on a phase plane (i.e., 
potassium activation, n, versus membrane potential, Vm).  
Although time is not explicitly included in the phase plane, the 
temporal evolution of the variables proceeds in a counter-
clockwise direction (arrow).  The resting membrane potential is 
represented by a stable fixed point (filled circle at the intersection 
of the two dashed lines).  The stimuli displace the system from 
the fixed point.  If the perturbations are small, the system returns 
to the fixed point (small blue and green loops).  However, for 
sufficiently large perturbations, the system is forced beyond a 
threshold and the trajectory travels in a wide loop before returning 
to the stable fixed point (red and black loops).  The system is said 
to be excitable because it always returns to the globally stable 
fixed point of the resting potential.  For more details concerning 
the application of phase plane analyses to computation models of 
neural function see Baxter et al. (2004), Canavier et al. (2005), or 
Rinzel and Ermentrout (1998). 
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eventually brings the membrane potential back to rest.  
Only when the input passes a threshold, does the action 
potential occur.  The action potential is an all-or-nothing 
event (FitzHugh, 1969), which means that an impulse 
generally reaches a fixed amplitude once the threshold is 
passed (see Fig. 3A). 

 
 

 

 

Figure 4.  Conductance changes underlying an action potential.  
The membrane potential (Vm) is illustrated by the black trace.  
The sodium conductance ( Nag m3h) is illustrated by the red trace, 
and potassium conductance ( Kg n4) is represented by the blue 
trace (see Fig. 2B).  In response to the depolarizing stimulus 
(Istim), the sodium conductance increases, which depolarizes the 
membrane potential and underlies the rising phase of the spike.  
The potassium conductance increases more slowly and underlies 
the falling phase of the action potential. 
 
 

Phase-Plane Representations.   The mathematics and 
terminology of nonlinear dynamical systems (Abraham and 
Shaw, 1992) are often used to analyze and describe 
neuronal properties.  For example, the results that are 
illustrated in Fig. 3A are represented as a time-series plot; 
i.e., the dependent variable (Vm) is plotted versus the 
independent variable time.  Alternatively, the data can be 
represented on a plane of two variables (i.e., a phase 
plane), Vm and n (Fig. 3B).  In the phase plane, the resting 
state of the system (Vm = -60 mV and n = 0.32) is 
represented by a stable fixed point (filled circle, Fig. 3B).  
In response to extrinsic stimuli, the system is momentarily 
perturbed off the fixed point and displays a loop (Fig. 3B) 
on the trajectory back to the resting state.  Each increasing 
stimulus displaces the voltage further away from the fixed 
point, until the membrane potential passes the threshold 
during the third and fourth stimuli.  The action potentials 
are represented by the two large loops (red and black 
trajectories).  A threshold phenomena is a hallmark of a 
nonlinear system where for a slight change in input, the 
system may exhibit a large change in behavior, as seen by 
the action potential of the HH model.  Note that the system 
always returns to the stable fixed point.  Thus, the fixed 
point is referred to as being globally stable and the system 
is referred to as excitatory.  All trajectories in the phase 
plane will return to the globally stable fixed point.  By 

modifying model parameters, the stability of the fixed point 
can be altered and the system can be made to oscillate 
(see below). 
 

 

Figure 5.  Induced oscillatory behavior.  A: The HH model 
oscillates if a constant, suprathreshold stimulus is applied.  Note 
that the first spike has a larger amplitude due to the model 
starting from the resting potential; whereas, subsequent spikes 
arise from an afterhyperpolarization.  B: Limit cycle.  The 
simulation in Panel A is replotted on the Vm-n phase plane.  After 
an initial transient, the trajectory of each action potential 
superimpose, which indicates the presence of a limit cycle.  The 
constant stimulus destabilizes the fix point and the system 
exhibits limit cycle dynamics. 
 

Oscillatory Behavior.   In addition to generating single 
spikes, the HH model can exhibit a second type of 
behavior, oscillations (Fig. 5A).  For a constant stimulus of 
sufficient magnitude, the HH model exhibits rhythmic 
spiking activity or oscillations.  This oscillatory behavior can 
be viewed as a limit cycle on a two-variable plane (Fig. 
5B).  Initially, the system is at rest and the dynamics of the 
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system are defined by the globally stable fixed point.  
However, the stimulus displaces the system from a resting 
state and destabilizes the fixed point.  The system 
trajectory progresses towards a limit cycle, which is the 
stable behavior for the duration of the stimulus.  Following 
an initial transient (the trajectories of the first and second 
spike), the trajectories of each subsequent spike 
superimpose, thus the limit cycle is referred to as stable.  
Once the stimulus ends (not shown), the limit cycle 
destabilizes and the stability of the fixed point returns and 
the system returns to the resting potential.  There are 
numerical techniques to calculate the steady state point 
(SSP) of a system and whether the point is stable or 
unstable (see Odell, 1980).  Alternatively, students can plot 
the resting potential as a function of stimulating current and 
observe when the fixed point becomes unstable.  Such a 
plot is referred to as a bifurcation diagram.  By 
systematically increasing the stimulating current, the 
resting state of the model will be replaced by oscillations 
and further increases in stimulus intensity will cause the 
model to oscillate at higher firing frequencies.  A plot of the 
amplitude of the stimulus current versus frequency of 
oscillations (I-F graph) can be used to determine the 
input/output properties of the HH model.  Students can 
graph the I-F curve and investigate whether there exists a 
linear range in the model response as well as determine 
the maximum firing frequency of the HH model. 

 
Intrinsic Oscillations.   The oscillations illustrated in Fig. 

5 require the application of an extrinsic stimulus.  However, 
the HH model also can manifest intrinsic oscillations, i.e., 
oscillations in the absence of extrinsic stimuli.  The 
induction of intrinsic oscillations requires modifying 
parameters in the model.  The HH model contains 
numerous parameters that can affect the stability of the 
fixed point.  By varying parameters, students can examine 
the ways in which the different parameters alter the 
behavior of the model. 

The ODE for membrane potential (dVm/dt) of the HH 
model contains numerous parameters that affect the 
behavior of the model.  Recall that each voltage- and time-
dependent ionic current in the HH model is composed of 
several terms, i.e., a conductance ( g ), 
activation/inactivation variables (m, n, and h) and a driving 
force (Vm – Eion; Fig. 2B).  The conductance of a current 
represents the density of channels for that ion.  The cell 
membrane contains many channels that allow the passage 
of a specific ion, and hence provide for the sodium and 
potassium currents.  Thus, changing the maximal 
conductance is equivalent to changing the density of 
channels in the membrane.  Different types of neurons 
have various densities of channels.  For example, if the 
number of potassium channels is reduced, the HH model 
manifests oscillatory behavior, similar to the oscillations 
observed in Fig. 5 but without the need of external current 
stimulation.  This oscillatory behavior is due to the reduced 
strength of the potassium current that normally tends to 
hyperpolarize the membrane potential.  The HH model with 

Kg  = 16 mS/cm2 (rather than the control value of 36 

mS/cm2) exhibits stable oscillations with no extrinsic 
stimulus; i.e., the system manifests intrinsic oscillations.  
Students can explore which other parameters can be 
altered to achieve intrinsic oscillations, such as changing 
the reversal potential. The SNNAP tutorial provides 
detailed instructions on how to alter the HH model to 
exhibit intrinsic oscillations. 
 

 

Figure 6.   Postinhibitory rebound excitation.   A:  Response of the 
HH model to hyperpolarizing current (Istim) injected into the cell. 
Weak hyperpolarizing current (red curve), strong hyperpolarizing 
current (black curve). Following these inhibitory inputs, the 
membrane potential returns toward rest.  The recovery of the 
membrane potential, however, overshoots the original resting 
membrane and depolarizes the cell.  With sufficiently large 
hyperpolarization, the rebound potential surpasses the threshold 
and an action potential is elicited.  B:  The simulations illustrated 
in Panel A are replotted in the Vm-n phase plane.  The 
hyperpolarizations are represented by hyperpolarizing 
displacements of the membrane potential and decreases in the 
value of potassium activation.  Following the hyperpolarizing 
stimulus, the trajectory moves back toward the resting potential, 
which is represented by a fixed point (filled circle).  However, the 
trajectory that follows the larger hyperpolarization crosses a 
threshold (also referred to as a separatrix) and an action potential 
is generated. 
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Figure 7.   Morris-Lecar (ML) model.  A:  Schematic representing 
elements of the ML model.  Similar to the HH model, the ML 
model has two fast ionic conductances ( , ) that underlie 
spike activity.  However, in the ML model the inward current is 
calcium rather than sodium.  To implement bursting, the ML 
model was extended to include an intracellular pool of calcium 
and a second, calcium-dependent potassium conductance 
( ).  The kinetics of the calcium pool are relatively slow and 
determined the activation kinetics of the calcium-dependent 
potassium conductance.  B: The ordinary differential equations 
(ODEs) that define the ML model.  The ODEs for membrane 
potential V

Cag Kg

)Ca(Kg

m and potassium activation n, are similar to that for the 
HH model, however, a new term is added to describe the calcium-
activated potassium current IK(Ca).  The activation of  is 
determined by a function of calcium concentration ([Ca]/( 
[Ca]+K)), and [Ca] is defined by an ODE in which the calcium 
current (k

)Ca(Kg

1ICa) contributes calcium to the ion pool and buffering 
(-k2[Ca]) removes calcium from the ion pool.  C:  If the 
intracellular pool of calcium and the calcium-activated potassium 
conductance are not included, the ML model exhibits oscillatory 
behavior in response to a sustained, suprathreshold stimulus.  D:  
With the intracellular pool of calcium and the calcium-activated 
potassium conductance in place, the ML model exhibits bursting 
behavior in response to a sustained suprathreshold stimulus.  The 
burst of spikes are superimposed on a depolarizing wave, which 
is mediated by calcium current.  The interburst period of inactivity 
is mediated by the calcium-dependent potassium current (see 
Fig. 8). 

Postinhibitory Rebound Excitation.   The nonlinearities 
and complexity of the HH model endow it with a rich 
repertoire of dynamic responses.  For example, extrinsic 
depolarizing stimuli can elicit either single spikes (Fig. 3) or 
oscillations (Fig. 5). Paradoxically, extrinsic hyperpolarizing 
stimuli also can elicit spike activity (Fig. 6A).  By injecting a 
negative (inhibitory) stimulus current, e.g. -25 uA/cm2 for 2 
msec (applied to the HH model described in the SNNAP 
Tutorial manual), the membrane potential becomes more 
hyperpolarized.  When the inhibition is removed, the 
membrane potential depolarizes beyond the original resting 
potential.  If the recovery of the membrane potential has a 
sufficient velocity, it passes threshold and produces an 
action potential.  This phenomenon is referred to as 
postinhibitory rebound excitation (Selverston and Moulins, 
1985) or anode break excitation. 

By displaying the postinhibitory responses on the Vm-n 
plane, Fig. 6B, it is clear that the threshold lies between the 
response curves for the two stimuli.  With the stronger 
inhibitory input, the membrane potential hyperpolarized to 
a more negative potential, and the trajectory back to rest 
leads to an action potential.  Students can experiment and 
observe the relationship between duration of stimulus and 
intensity needed to elicit an action potential. 

Additional Simulations with the HH model.   The above 
section illustrated single spike responses to stimuli, 
oscillations and postinhibitory rebound.  The HH model can 
be used to investigate additional biophysical features of 
single neurons.  The HH model manifests accommodation 
and students can investigate the ways in which 
subthreshold depolarizing stimuli can raise the threshold 
for excitation.  Simulations also can examine the absolute 
and relative refractory periods of the HH model.  Voltage-
clamp experiments also can be simulated and students can 
examine the time- and voltage-dependence of membrane 
currents.  Alternatively, students can develop new HH-like 
models that incorporate a larger ensemble of ionic 
conductances.  For example, SNNAP provides an example 
of a generic spiking model that can be extended to include 
currents, such as the transient A-type potassium current 
and/or a calcium-dependent current (McCormick, 2004).  
These extended models can be used to examine ways in 
which more complex neurons respond to input signals. 

 
Bursting Neurons.  Neurons exhibit a wide variety of 

firing patterns (for a review see McCormick, 2004).  One 
pattern that is observed in many neurons is referred to as 
bursting, alternating periods of high-frequency spiking 
behavior followed by a period with no spiking activity 
(quiescent period).  Bursting is observed in neurons in 
various parts of the nervous system.  Pacemaker neurons 
(Smith, 1997), also known as endogenous bursters, are 
endowed with the intrinsic ability to fire independently of 
external stimulation.  Other neurons have bursting ability 
that may require a transient input to initiate their burst 
cycle, known as conditional bursters.  Central pattern 
generators (CPGs; Abbott and Marder, 1998) are neuronal 
networks that help orchestrate rhythmic activity and CPGs 
often contain bursting neurons.  The rich dynamic behavior 
of neurons that exhibit bursting has attracted both 
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neuroscientists and mathematicians in an effort to 
understand the underlying mechanisms that bring about 
this behavior and its modulation (for reviews see Rinzel 
and Ermentrout, 1998; Baxter et al., 2004; Canavier et al., 
2005). 
 

 

Figure 8.   Mechanisms underlying bursting behavior of the ML 
model.  A:  Membrane potential during bursting.  B:  During the 
burst of action potentials (Panel A), the intracellular levels of 
calcium slowly increase.  C:  As the levels of calcium increase 
(Panel B), the calcium-dependent potassium conductance 
increases.  Eventually, the calcium-dependent potassium current 
is sufficiently large to halt spiking and a period of inactivity follows 
(Panel A).  During the quiescent period, the level of calcium falls 
(Panel B) and the activation of the potassium current decreases 
(Panel C).  This allows the membrane potential to slowly 
depolarize back toward threshold and another burst of spikes is 
initiated.  Therefore, bursting originates from the interactions 
between a fast (calcium/potassium) spiking process and a slow 
(intracellular calcium/calcium-activated potassium) inhibitory 
process (see Fig. 7A). 
 

Neuronal bursting behavior can result from various 
mechanisms.  One common mechanism leading to 
bursting is the oscillation of a slow-wave calcium current 
that depolarizes the membrane and causes a series of 
action potentials as the wave exceeds the spike threshold.  
When the slow wave ends, the quiescent period begins.  In 
this section, a bursting neuron model is developed; see 
also the SNNAP Tutorial manual for a description of a 
SNNAP implementation.  The bursting model (Rinzel and 
Ermentrout, 1998) is based on the Morris-Lecar (ML) 
model (Morris and Lecar, 1981) (Fig. 7). 

The primary advantage of using the ML model is that it 
contains fewer ODEs, algebraic expressions and 
parameters than the HH model. Thus, the ML model is a 
relatively simple biophysical model.  The original ML model 
incorporated three ionic conductances that were similar to 
the HH model, but in the ML model calcium was the inward 
current rather than sodium (Fig. 7B).  The ML model is 
simpler than the HH model in two ways.  The calcium 
current has an instantaneous steady-state activation term 
( ∞m ) that is dependent only on voltage; i.e., a function of 
voltage and not a variable dependent on time.  In addition, 
the calcium current does not have an inactivation term.  
The simplification of the activation term to a voltage-
dependent function can be justified when one process is 
much faster than another.  In the ML model, calcium 
activation is several times faster than potassium activation, 
and thus, calcium activation is assumed to be 
instantaneous (see Rinzel and Ermentrout, 1998). 

Similar to the HH model, the original ML model exhibits 
a single action potential in response to a brief stimulus (not 
shown) and oscillatory behavior in response to a sustained 
stimulus (Fig. 7C).  By incorporating an additional term, a 
calcium-dependent potassium current, and an ODE, for 
intracellular calcium concentration, the ML model can 
exhibit bursting behavior.  The new ODE describes the 
change in intracellular calcium concentration (Fig. 7B).  
Intracellular calcium ([Ca]) is accumulated through the flow 
of the calcium current (ICa) and is removed by a first-order 
process that is dependent on the concentration of 
intracellular calcium.  The additional term describes a new 
current, a calcium-dependent potassium current (IK(Ca)) 
(Fig. 7B).  This current is different from the currents that 
were described previously because IK(Ca) is activated as a 
function of intracellular calcium and not by membrane 
voltage.  When intracellular calcium is high, the activation 
function approaches one.  When intracellular calcium is 
low, the function approaches zero.  The additional 
potassium current provides a negative feedback 
mechanism for bursting behavior.  By incorporating these 
two equations, the dynamic property of the model is 
altered, so that the model may exhibit bursting behavior 
(Fig. 7D). 

In the language of nonlinear dynamics, the bursting 
behavior exhibited by the ML model is the result of a 
hysteresis loop (for additional details see Del Negro et al., 
1998; Rinzel and Ermentrout, 1998; Baxter et al., 2004; 
Canavier et al., 2005).  Mathematically, the oscillatory 
behavior is a limit cycle that is more complex than the limit 
cycle exhibited by the HH model.  The hysteresis loop is 
due to negative feedback, which causes the following 
behavior.  As the intracellular calcium concentration 
decreases (Fig. 8B), the membrane potential slowly 
depolarizes until the model begins to exhibit action 
potentials (Fig. 8A).  The concentration of intracellular 
calcium increases during the period of activity, thereby 
activating the calcium-dependent potassium current, which 
in turn halts the neural activity (Fig. 8C).  The increase in 
potassium activation is the negative feedback that causes 
a decrease in the net inward current, and eventually the 
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calcium slow wave ends and the membrane approaches its 
resting potential.  As intracellular calcium is removed, the 
calcium-dependent potassium current decreases as well, 
which allows the membrane potential to depolarize during 
the quiescent period.  During the quiescent period 
intracellular calcium is removed, until a minimum level is 
reached and neural activity is resumed.  This process 
repeats itself and is called a hysteresis loop. 

 
 

 

Figure 9.   Excitatory and inhibitory postsynaptic potentials 
(EPSPs and IPSPs).  A:  Similar to ionic currents (see Fig. 2B), 
synaptic currents are defined by a maximum conductance ( sy ), 
a time-dependent activation function (α) and a driving force (V

ng
m – 

Esyn).  An expression that is commonly used to define the time-
dependent activation function is referred to as an alpha (α) 
function, which resembles the time course of empirically observed 
synaptic currents.  SNNAP offers several additional functions for 
defining synaptic activation, including functions that incorporated 
both time- and voltage-dependency.  B:  In this simple neural 
network, a single presynaptic cell (A) makes synaptic connections 
with two postsynaptic cells (B and C).  The connection from A to 
B is excitatory, whereas the connection from A to C is inhibitory.  
The only difference between the two synaptic models is the value 
for Esyn.  For excitatory synapses, Esyn is more depolarized than 
the resting membrane potential; whereas for inhibitory synapses, 
Esyn is more hyperpolarized than the resting potential.  

     The period of an individual bursting cycle is the sum of 
both active and quiescent durations.  Students can 
manipulate various parameters so as to alter the behavior 
of bursting neurons.  For example, the duration of the burst 
is dependent on the rate of intracellular calcium 
accumulation.  By reducing the rate of intracellular calcium 
accumulation (k1 in Fig. 7B) the duration of activity is 
increased.  Simulations can allow students to propose and 
then test hypotheses regarding what types of changes to 
which parameters might alter the duration of activity and/or 
quiescence. 
 

SYNAPTIC TRANSMISSION AND INTEGRATION 
The predominate means of communication among nerve 
cells is via chemical synaptic connections.  To model a 
synaptic connection, the ODE that describes the 
membrane potential of a cell (see Fig. 2B) is extended to 
include a new current, a synaptic current (Isyn).  Similar to 
ionic currents, synaptic currents are defined by a maximum 
conductance ( syng ), a time-dependent activation function 
(α) and a driving force (Vm – Esyn) (Fig. 9A).  The time-
dependent activation can be described by many types of 
functions, but the most common function is the alpha (α) 
function (Fig. 9A), which resembles the time course of 
empirically observed synaptic currents.  In addition, some 
synaptic connections (e.g., NMDA-mediated synaptic 
current) have a voltage-dependent component.  (Although 
SNNAP can model voltage- and time-dependent synaptic 
connections, they will not be considered in this paper.) 

Postsynaptic potentials (PSPs) are often classified as 
being either excitatory (EPSP) or inhibitory (IPSP) (Fig. 
9B).  From a modeling point of view, the only difference 
between the two types of PSPs is the value assigned to 
Esyn.  If Esyn is more depolarized than the resting potential, 
the PSP will depolarize the postsynaptic cell and will be 
excitatory.  Conversely, if Esyn is more hyperpolarized than 
the resting potential, the PSP will hyperpolarize the cell 
and will be inhibitory.  However, remember that 
hyperpolarizing pulses can elicit spikes in some cells (see 
Fig. 6) and that subthreshold depolarizations can lead to 
accommodation in some cells (Hodgkin and Huxley, 1952) 
and thus inhibit spiking.  Students can use simulations to 
investigate the interactions between EPSPs, IPSPs, and 
the biophysical properties of the postsynaptic cell. 

Temporal Summation.   Often, the EPSP elicited by a 
single presynaptic spike is subthreshold for eliciting a 
postsynaptic action potential.  What is required are several 
presynaptic spikes in quick succession to elicit a 
suprathreshold postsynaptic response.  This scenario 
represents an example of synaptic integration known as 
temporal summation (for review see Byrne, 2004). 

Temporal summation occurs when a given presynaptic 
cell fires several spikes with short inter-spike intervals (Fig. 
10).  In Fig. 10A, two action potentials are elicited in the 
presynaptic cell (neuron A).  The inter spike interval is 100 
ms and each presynaptic spike elicits an EPSP in neuron 
B.  These EPSPs, however, are subthreshold and neuron 
B fails to spike.  In Fig. 10B, the interspike interval is 
reduced to 50 ms, and the two EPSPs summate. Because 
of this temporal summation, a postsynaptic action potential 
is elicited.  Whereas a single EPSP may be subthreshold, 
closely timed EPSPs can summate and elicite a 
postsynaptic spike.  Students can vary the timing between 
the presynaptic spikes, the duration and amplitude of the 
EPSP to investigate the ways in which these parameters 
alter temporal summation.  The diversity and complexity of 
synaptic connections is a key determinant of neural 
network functionality and students should examine the 
ways in which various types of synaptic inputs interact with 
postsynaptic processes. 
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Figure 10.  Temporal summation.  A network of two neurons with 
an excitatory synapse from cell A to cell B.  A:  Two presynaptic 
action potentials are elicited with an interspike interval of 100 ms.  
The individual EPSPs are subthreshold for eliciting a postsynaptic 
spike.  B:  If the interspike interval is reduced to 50 ms, the 
EPSPs summate and elicit a postsynaptic spike.  The temporal 
summation of the two EPSPs produces a suprathreshold 
depolarization in the postsynaptic cell and a spike is elicited. 
 
 
NEURAL NETWORKS 
To understand the basic principles of how neural systems 
function, it is important to investigate the ways in which 
neurons interact in a network.  In this section, a simple 
neural network composed of three HH neuron models is 
presented (Fig. 11).  The individual neurons exhibit an 
action potential in response to suprathreshold stimuli and 
the neurons are interconnected via excitatory chemical 
synapses.  The neurons are connected in a ring 
architecture and exhibit oscillations once an initial neuron 
fires an action potential. 

Single neurons can exhibit oscillatory behavior (Fig. 5), 
either as a result of constant stimulation or due to 
parameter values that destabilize the fixed point.  A 
network can also exhibit oscillatory behavior.  The network 
in Fig. 11 is a three neuron network with excitatory 
chemical synapses such that cell A excites cell B, cell B 
excites cell C, and cell C excites cell A.  Thus, the network 
architecture is in the form of a ring.  After providing an 
initial transient stimulus to cell A, the three neurons fire 
sequentially and the network exhibits stable oscillatory 
behavior (Fig. 11). 

Students can explore the ways in which the firing 
frequency may be altered by changing the synaptic 
strength.  In addition, students can determine whether the 
network may oscillate with inhibitory connections between 
the neurons.  With IPSPs, the firing results from 
postinhibitory rebound (Fig. 6).  Applying the same 
mechanism here, if the synaptic current is changed to a 
negative current, can oscillations be achieved in the 
network with inhibitory synaptic connections?  The answer 
is yes, but it requires a large negative current to bring 
about a postinhibitory rebound action potential.  Students 
can experiment by altering some or all of the synaptic 
connections and see which current intensity is needed to 
produce a postinhibitory rebound.  Additional investigations 
can be carried out by incorporating additional neurons into 
the network.  This alters the firing frequency of the network.  
Students may experiment by varying the network 
architecture and examining different firing patterns in terms 
of frequency, propagation speed, and collision events (e.g., 

initiating two spikes that will cause a collision in the 
network). 
 

 

 

Figure 11.  Three cell neural network with recurrent excitation.  
Three HH models connected in a ring-like architecture.  All 
synaptic connections are excitatory.  An initial, brief stimulus to 
cell A (Istim.) elicits a single action potential, which in turn, 
produces suprathreshold EPSP in cell B, which in turn, produces 
a suprathreshold EPSP in cell C.  Cell C excites cell A and the 
cycle repeats itself indefinitely. 
 

Compartmental Models of Single Cells.   There exists a 
second type of network that scientists use to model neural 
behavior and that is a compartmental model of a single 
neuron (for review see Segev and Burke, 1998).  
Previously, the space-clamped version of the HH model 
was investigated.  Using such a model, the spatial aspects 
of the neuron are not considered.  To describe the physical 
form of a neuron, the spatial distribution of channels and 
synapses must be taken into account.  One way to model 
such a neuron is by creating many compartments and 
connecting them together.  Each compartment can be 
viewed as a HH model, with a resistor between the 
compartments.  Students in advanced courses may wish to 
examine examples of compartmental models on the 
SNNAP web site and a recent example of a compartmental 
model was published by Cataldo et al. (2005).  This model 
used SNNAP to simulate a neuron that spans several body 
segments of the leech.  The input files for this model and 
for several additional compartmental models are available 
at the ModelDB web site. Similar models are used to 
examine the complexities of synaptic integration in 
mammalian neurons (e.g., Hausser et al., 2000). 

 
DISCUSSION 
This paper described several biophysical models and 
computer simulations that can be used to explore a variety 
of basic principles in neuroscience.  Such models and 
simulations provide students with tools to investigate 
biophysical factors and nonlinear dynamics that alter single 
neuron and neural network behavior.  The examples 
presented in this paper were generated using the 
neurosimulator SNNAP. 

An example of SNNAP used in an undergraduate 
neurobiology course is at Saint Joseph’s University, 
Philadelphia.  In 2001, Dr. James J. Watrous received a 
“Teaching Career Enhancement Award” from The 
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American Physiological Society (Silverthorn, 2003).  The 
goals of Dr. Watrous’ project were to develop computer 
simulations that demonstrate several key principles of 
neuroscience and to integrate theses simulations into an 
undergraduate course on neurobiology.  Dr. Watrous 
selected SNNAP for the project.  Working with students 
and members of the SNNAP development team, Dr. 
Watrous developed simulations that demonstrated 
excitability, bursting behavior, and neuronal interactions 
within a network (Hayes et al., 2002; Watrous et al., 2003).  
In addition to developing simulations, these efforts 
produced several student research projects (e.g., Pekala 
and Watrous, 2003; Murray and Watrous, 2004; Pham et 
al., 2004; Lamb and Watrous, 2005).  Currently, students 
enrolled in the undergraduate neurobiology course are 
given instruction on the use of SNNAP and provided with 
the necessary files to construct a network consisting of five 
neurons.  Sufficient excitatory and inhibitory synapse files 
are also provided so students can individually control the 
type and properties of each synapse.  To encourage active 
learning, each team is instructed to pose a research 
question, problem, or situation that they wish to solve or 
demonstrate; construct a network that would answer the 
question posed; and develop a presentation showing their 
hypothesis, the network that was constructed, and their 
results.  Each group presents their findings to the entire 
class.  All of this is accomplished in two, four-hour periods.  
The published accounts indicate that “student evaluations 
of this exercise were very positive” (Watrous, 2006).  Thus, 
SNNAP appears to be useful too for teaching 
undergraduate students basic principles of neuroscience. 

There are several applications available for educators 
that can be used to simulate experiments in neuroscience, 
e.g., NeuroSim and Neurons in Action.  SNNAP differs 
from these commercial packages in that it is free for 
download from the Web.  SNNAP, based on Java, runs on 
virtually any platform (different from NeuroSim which runs 
only on Windows machines). In terms of capabilities, 
NeuroSim can simulate the Goldman-Hodgkin-Katz 
constant field equation, which SNNAP in its current version 
does not (but can be modified relatively easily to 
incorporate this equation).  NeuroSim, though, has a limit 
of five channel types per simulation, which may become a 
serious limitation.  Neurons in Action is very well suited for 
single neuron simulations, but lacks examples of networks. 
SNNAP lacks equations for multiple-state kinetic models of 
single ion channels but focuses on equations for synaptic 
modulation as well as compartmental modeling of single 
and/or networks of neurons. 

More complete descriptions of the capabilities of 
SNNAP can be found on the web site, in the tutorial 
manual (Av-Ron et al., 2004), and in several publications 
(Ziv et al., 1994; Hayes et al., 2003; Baxter and Byrne, 
2006).  A brief list of some of the capabilities of the current 
version of SNNAP (Ver. 8) is provided below: 

• SNNAP simulates levels for biological organization that 
range from second messengers within a cell to 
compartmental models of a single cell to large-scale 
networks.  Within a neural network, the number of 

neurons and of synaptic connections (electrical, 
chemical, and modulatory) is limited only by the memory 
available in the user’s computer. 
• SNNAP can simulate networks that contain both 

Hodgkin-Huxley type neurons and integrate-and-
fire type cells.  Moreover, the synaptic contacts 
among integrate-and-fire cells can incorporate 
learning rules that modify the synaptic weights.  
The user is provided with a selection of several 
nonassociative and associative learning rules that 
govern plasticity in the synapses of integrate-and-
fire type cells. 

• SNNAP simulates intracellular pools of ions and/or 
second messengers that can modulate neuronal 
processes such as membrane conductances and 
transmitter release.  Moreover, the descriptions of 
the ion pools and second-messenger pools can 
include serial interactions as well as converging 
and diverging interactions. 

• Chemical synaptic connections can include a 
description of a pool of transmitter that is regulated 
by depletion and/or mobilization and that can be 
modulated by intracellular concentrations of ions 
and second messengers.  Thus, the user can 
simulate homo- and heterosynaptic plasticity. 

• SNNAP simulates a number of experimental 
manipulations, such as injecting current into 
neurons, voltage clamping neurons, and applying 
modulators to neurons.  In addition, SNNAP can 
simulate noise applied to any conductance (i.e., 
membrane, synaptic, or coupling conductances). 

• SNNAP includes a Batch Mode of operation, which 
allows the user to assign any series of values to 
any given parameter or combination of parameters.  
The Batch Mode automatically reruns the 
simulation with each new value and displays, 
prints, and/or saves the results. 

• SNNAP includes a suite of over 100 example 
simulations that illustrate the capabilities of SNNAP 
and that can be used as a tutorial for learning how 
to use SNNAP or as an aid for teaching 
neuroscience. 

• SNNAP is freely available and can be downloaded 
via the internet.  The software, example files, and 
tutorial manual (Av-Ron et al., 2004) are available 
at http://snnap.uth.tmc.edu. 
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