
The Journal of Undergraduate Neuroscience Education (JUNE), Spring 2004, 2(2):R3-R5

JUNE is a publication of Faculty for Undergraduate Neuroscience (FUN) www.funjournal.org

MEDIA REVIEW
A Comparison of Two Programs for the Control of Behavioral Experiments

Reviewed by W. Jeffrey Wilson
Department of Psychology and Neuroscience Program, Albion College, Albion, MI 49224

Two of the most widely used programs for the
control of behavioral experiments are Med Associates’
MedState Notation and Coulbourn Instruments’ Graphic
State 2. The two systems vary considerably in their
approach to programming and data recording, with Graphic
State 2 using a point-and-click interface that appeals to

non-programmers while MedState Notation requires the
typing of programming code. Graphic State 2 provides
many data analysis routines, while MedState Notation
allows the user to embed simple data analysis within the
behavioral protocol. Graphic State 2 is simpler to use, but
M e d S t a t e N o t a t i o n i s m o r e v e r s a t i l e .

Software designed for the control of behavioral
experiments can facilitate research when it is well-
designed and easy to use. I will contrast two systems
designed for this purpose, in the hopes of providing a
perspective that will allow the novice researcher to find a
system that will work best for his or her purposes. Please
view the following as the observations of an experienced
behavioral scientist and user of both systems, but not a
technical expert on either.

My experience in programming behavioral
experiments began with my undergraduate experience in
the laboratory of Earl Thomas at Bryn Mawr College in the
1970s, when relay racks and spaghetti wiring were the
norm. I had had limited formal instruction in programming
(anyone remember Focal?) but the logical nature of the
task appealed to me, and I actually enjoyed rearranging
the snap leads. Shortly thereafter Thomas’ lab acquired a
Logic Box (manufactured by Lehigh Valley Electronics) – a
very clever device that incorporated the logic of several
racks of relays into a small breadbox-sized console.
Programming still involved rearranging leads, but the basic
logical components of OR gates, AND gates, and flip-flops
were prebuilt, so the overall task was considerably
simplified.

In the 1980s my lab initially controlled its
experiments using SKED, running on a DEC PDP-8. This
was a fabulous language, and was the logical grandparent
of the commercial systems that I will review. It was
conceptually quite simple: the software could read inputs,
could control outputs, and could keep track of time. Every
fraction of a second the program would cycle through a list
of “state sets,” each of which could be thought of as a
simple program. Each state within the state set would
watch for an input (which might be a switch closure or the
passage of a certain amount of time), and in response
would increment counters, reset timers, and turn on or off
various stimuli before going to a different state. Because
conditional statements were allowed (e.g., “if Light=On and
RightLever=Pressed then …” – not the actual language but
it conveys its spirit) very powerful behavioral programs
could be written. The major drawback to the use of SKED
was the high cost of repairing the computer needed to run
it; we were ultimately forced to stop using it because of this
expense.

With the demise of our PDP-8 I decided to
implement a SKED-like program on an IBM-PC clone (an
8088 processor that ran at 12 MHz). The reading of inputs
and the control of outputs were accomplished via an
interface similar to one described by Mangieri (1991) that
was attached to the computer’s parallel port. The program
that I wrote in Borland’s Turbo Pascal read the inputs,
controlled outputs, and stepped through multiple state sets
just as did SKED. The greatest difficulty in creating the
program on the PC was timing: the internal clock was
accurate to the nearest 0.055 s – and timing to the nearest
0.01 s was needed. I wrote a routine (based on Norton,
1985) that modified the computer’s internal tone generator
to serve as a timer to overcome this problem. My software
worked very well, but was not documented in a manner
that facilitated use by others, and was certainly not
“dummy-proofed,” in that an inexperienced programmer
could easily write a program that would fail or worse yet
damage the hardware. I blew up several power transistors
in the several years that I used the system. See Wilson
(1996) for a description of my system.

When it became clear that I wanted my students to
be able to program the experiments, I opted for a
commercial system. Med Associates’ MedState Notation
was based on Turbo Pascal (now Delphi) and so was very
similar to the home-brewed system that I had used; this
was the first of these two commercial systems that I tried,
in 1999. A year later I purchased Coulbourn Instruments’
Graphic State 2 (GS2) system. Herein I will compare the
two from the standpoint of ease of use and versatility
(versions evaluated: Med Associates’ Med-PC for Windows
[WMPC]; Coulbourn Instruments’ Graphic State 2 ver.
2.002 – both have been upgraded since my purchase, but
have not been changed in any fundamental ways that
would cause me to alter my descriptions or conclusion). It
will become clear to the reader that I favor one system over
the other, but both have their advantages.

OVERVIEW OF THE SYSTEMS
Both the Med Associates and the Coulbourn

Instruments systems can monitor multiple inputs and
control multiple outputs. Both can run multiple experiments
concurrently with ease. Both require a Windows-based
system and really should be run on a dedicated computer

Media Review: MedState Notation vs Graphic State 2 R4

that is not burdened by being connected to a network. Both
offer a runtime screen that provides information about the
status of the current experiment. Both systems are
designed to be used with proprietary interfacing equipment
available from the manufacturer. The reader is urged to
consult the manufacturers’ web sites (www.coulinst.com
and www.med-associates.com) for detailed descriptions of
the products. I should note that I have received timely and
helpful assistance from both companies when it was
needed.

Med Associates’ offering is a programmer’s
system. The user creates a text file consisting of
statements written in MedState Notation (easily learned by
a Pascal programmer, challenging for the user with no
programming experience). This can be done using the
editor provided with the system or with any editor or word
processor capable of producing plain-text output. The
program can contain as many as 32 distinct state sets,
each acting as an independent “mini-program.” Prior to use
the program must be compiled, a process that will reveal
coding errors that must be corrected before compilation
can succeed. Once a program is successfully compiled it is
available to be run from a pull-down menu within a
separate Med Associates program.

MedState Notation allows data to be stored in 26
variables (labelled ’A’ to ’Z’), each of which can take the
form of either a single variable or a 1-dimensional array.
These variables can store any data that the user specifies
when the program is written. For example, one might
contain the total number of times that a lever was pressed,
another might contain a list of inter-response latencies, and
a third might indicate the number of “correct” responses.
Although limiting the total number of variables to 26 might
seem constraining, I have yet to find this too restrictive,
especially because arrays are allowed. The data are
written to disk as a plain text file; several formats are
available for the data file, and the one selected will
probably be determined by whether or not the file will be
imported into a spreadsheet.

Coulbourn Instruments offers a programming
environment designed for the non-programmer. The
programming window offers a picture of the front panel of
the hardware that interfaces with the behavioral equipment.
By pointing and clicking within this window the user can
can specify the stimuli to be turned on during each state,
the responses or time events that cause the state to
terminate, and the target state(s) to be activated upon
termination of the state. For example, to turn on the
houselight for 10 s, the programmer would click on the
houselight button to toggle it on, and specify that the state
should end after 10 s. The program must be written via the
Graphic State 2 programming interface, and the program is
saved in a proprietary format that requires it to be viewed
via Graphic State 2. Because of this it is impossible to print
the program for archival purposes. Once the program is
constructed, GS2 performs a check to ensure that it
contains no states that are not called by at least one other
state or that fail to call another state – a check that helps to
ensure that the program is at least likely to terminate.
Because the user writes no code, errors in programming
syntax are far less likely than in Med Associates’ system.

Graphic State 2 consists of a single state set; that
is, only a single state can be active at any given time, as
compared to MedState Notation’s 32 concurrent states.
Usually counters and timers are reset when a new state is
entered, but the program allows them to retain their values
across states or throughout an entire session.

Graphic State 2 logs all events while a session is
being run, even if they have no effect on the program. If a
state is ended by a response on Lever 1, for example, the
program will also log responses on Lever 2 even if they do
nothing. The data file that is created contains a record of
every response or state change that occurred during the
session, with a record of the time during the session when
the event occurred and an indication of the cause of each
state change. The programmer cannot specify any
variables to be recorded or saved – instead a record of the
entire session is available at its conclusion for analysis by
Graphic State 2’s extensive library of analysis routines or
for exporting as a text file.

PROGRAMMING EASE AND VERSATILLITY
Without question, the easier of the two systems to

learn to program is Graphic State 2. The point-and-click
interface obviates the need to learn seemingly obscure
programming language, and the fact that the program
records everything that occurs during a session means that
the user does not have to program variables to track
relevant information. Indeed, a student with no
programming experience watched me write a simple
program one morning, and by the afternoon had mastered
Graphic State 2 well enough to write a program to control a
two-lever autoshaping procedure.

In comparison, MedState Notation requires text-
based programming in a syntactically precise manner. It is
true that the commands are reasonably intuitive (e.g., “on”
turns on a stimulus), but they must be learned and they
must be entered correctly. Furthermore, the user must
specify and track all variables of interest; the program will
automatically record the values of variables A through Z at
the end of the session, but these values will be 0 unless
the program contains code to update them (e.g., count
responses in variable R, record number of trials in variable
T, etc.). Users with no programming experience find the
system somewhat intimidating.

In terms of versatility though, MedState Notation is
superior to Graphic State 2. The availability of only one
state set within a Graphic State 2 program makes some
tasks either very difficult or perhaps impossible to program,
especially those tasks that involve independent timing of
various stimuli. For example, consider the truly random
control condition in a Pavlovian conditioning study
(Rescorla, 1967). The investigator wants a tone to turn on
for 5 s and a feeder to operate for 0.1 s; the two should
occur perhaps 20 times each during a 30-min session, but
totally randomly with respect to each other. In MedState
Notation each could be controlled by its own state set,
without any reference to or input from the other (as if each
stimulus was controlled by its own 1960s-era tape timer).
In GS2, because a stimulus can be turned on only by entry
into a state, and because only a single state set is
available, the two stimuli must of necessity be controlled

The Journal of Undergraduate Neuroscience Education (JUNE), Spring 2004, 2(2):R3-R5 R5

together, and a complex program must be established
consisting of states in which none is on, one is on, or both
are on; the durations of these states will be varied and
complicated. I think that the only way to implement this
program in GS2 would be to create a fixed schedule of the
two stimuli that simulates the random occurrence of both,
then to program this fixed schedule. Different “random”
schedules would require the generation of different
simulations and then programming them. A program in
which the two stimuli occur truly randomly with respect to
each other might well be impossible in GS2.

DATA FILES AND ANALYSIS
The two systems differ considerably in their

approach to data handling. GS2 creates a log of a session
that contains every transition from one state to another
(because stimuli are tied to states this corresponds to a
record of stimulus presentations) and every response
onset and offset (whether the responses cause state
transitions or not). The result is a complete record of the
session, available for export as a text file or for analysis
within GS2 itself. Because the record of the session
contains all responses that were available to be monitored
the researcher can ask questions after the fact that were
not anticipated at the time the session was run. A large
number of routines are provided by GS2 that allow
extensive analysis of the data, including frequency of entry
into each state, number of responses within each state,
inter-response intervals, etc. Unfortunately the
explanations of these routines are far from intuitive, and
the routines seem geared toward free-operant schedules. I
run trial-based studies, often in runways or mazes, and the
analyses have never been useful to me except as quick
checks at the end of a session to ensure that data were
recorded. I have relied on the exported raw data text files,
which I then filter extensively and analyze with a
spreadsheet program (e.g., Excel or Gnumeric).

MedState Notation’s approach to data is far
different: only the variables specified by the programmer
are recorded; there will be no record of the number of
responses if the program does not contain a counter that is
incremented with each occurrence of the response.
MedState Notation allows data to be saved in text files in a
limited number of formats, some human friendly and some
(supposedly) spreadsheet friendly. No analysis routines
are included with the packages. In my experience the text-
files must be manipulated extensively with a spreadsheet
before useful analysis can occur. Med Associates offer an
additional program called MPC2XL to ease translation from
their data files to a spreadsheet; I have no experience with
it.

Although both MedState Notation and GS2 data
files could be made far more user-friendly in terms of how
data are formatted for subsequent use by spreadsheet
programs, I find MedState Notation’s files easier to use.
They are inherently smaller, because they contain only
those data that I have requested. Because I can specify
counters, timers, and other variables in the program, the
data file contains the information that I want with very little
further analysis, For example, some of my behavioral

routines allow rats to control the onset of their own
Pavlovian trials, and the number of trials initiated is a
critical dependent variable. A variable within a MedState
Notation program can record this number as the session
runs, display it on the screen, and save it in the data file. In
GS2 this variable would correspond to the number of times
a particular state is entered; there is no way to display this,
but instead an analysis must be run on the data at the
conclusion of the session.

The ability to create user-defined variables that
track meaningful information, and to display these
variables as they are updated during the session, make a
MedState Notation session far more informative than a
session run in GS2. A well-designed MedState Notation
screen can provide all of the data of interest at the end of a
session. GS2 sessions are likely to require post-session
analysis in order to get even the most rudimentary of data.

CONCLUSION
Med Associates’ MedState Notation and Coulbourn

Instruments’ Graphic State 2 both offer the scientist useful
tools for behavioral research. GS2’s strengths lie in its
user-friendly programming interface and its many analytical
routines. For the non-programming scientist running
operant studies GS2 might be a good choice. MedState
Notation, with the availability of multiple concurrent state
sets, offers a far more powerful programming environment.
The time spent in mastering MedState Notation will be
rewarded by the ability to program complicated procedures
with ease. I believe that the serious behavioral scientist is
better served by the Med Associates’ product.

REFERENCES
Mangieri AM (1991) Build a parallel printer port I/O interface.

ComputerCraft, pp 54-58, 76-79.
Norton P (1985) The Peter Norton programmer’s guide to the IBM

PC. Bellevue, WA: Microsoft Press.
Rescorla RA (1967) Pavlovian conditioning and its proper control

procedures. Psych Rev 74:71-80.
Wilson WJ (1996) The y-maze: A versatile automated T-maze for

learning and memory experiments in the rat. Behavior
Research Methods, Instruments, & Computers 28:360-364.

Purchase of the systems described was supported with funding from
Albion College’s Neuroscience Program and Department of Psychology.

Address correspondence to: W.J. Wilson at wjwilson@albion.edu or 611
E. Porter St., Albion, MI 49224.

Copyright © 2004 Faculty for Undergraduate Neuroscience

www.funjournal.org

