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Outcomes assessment of undergraduate neuroscience 
curricula should assess the ability to think integratively 
about basic neuroscience concepts based on two of the 
core competencies established by the Faculty for 
Undergraduate Neuroscience.  The current study 
investigated whether the structural assessment of 
knowledge (SAK) approach, which evaluates the 
organization of an individual’s knowledge structures, is 
effective for demonstrating learning of basic neuroscience 
concepts.  Students in an introductory psychology course 
(n = 29), an introductory neuroscience course (n = 19), or 
an advanced behavioral neuroscience course (n = 15) 
completed SAK before and after learning gross brain 

anatomy and neuronal physiology.  All students showed 
improvements in their SAK after short-term dissemination 
for gross brain anatomy, but not for neuronal physiology, 
concepts.  Therefore, research is needed to determine 
whether the effectiveness of SAK in outcomes assessment 
depends on the content or teaching style.  Additional 
research using SAK should also explore effectiveness for 
learning over longer time frames and correlations with 
student performance in the course.  However, the results 
suggest SAK is a promising technique for outcomes 
assessment of undergraduate neuroscience curricula. 
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A workshop hosted by the Faculty for Undergraduate 
Neuroscience established a set of core competencies that 
will help with the design and assessment of neuroscience 
curricula (Kerchner et al., 2012).  Of the six established 
competencies, two are focused on for the current study. 
First, successful neuroscience undergraduates are 
expected to demonstrate basic knowledge in 
Neuroscience, Biology, Chemistry, and Psychology.  On its 
own, this competency could rely exclusively on rote 
memorization, which tends to promote short-term, low-level 
cognitive thinking (Momsen et al., 2010).  Therefore, a 
second competency recommending the ability to think 
critically and integratively is also included among others, 
suggesting that high-level cognitive thinking about basic 
scientific information is critical at the undergraduate level 
(Kerchner et al., 2012).  The establishment of these 
competencies requires designing modes of evaluation that 
will allow educators to assess the ability of students to 
apply high-level thinking to the acquisition of basic 
knowledge structures.  While it is possible to use more 
typical assessment tools, such as pretest/posttest scores 
for quizzes or exams, these measures tend to be reliant on 
the types of questions being assessed and whether they 
truly demonstrate knowledge change may be unreliable. 
     Previous research has demonstrated that the number 
and organization of knowledge structures corresponds 
directly with expert-like status (Davis and Yi, 2004).  The 
phrase structural assessment of knowledge (SAK) has 
been coined to describe the process of evaluating the 
organization of an individual’s knowledge structures 
pertaining to a certain domain, e.g., neuroscience 
(Trumpower et al., 2010). 
     While similar to typical concept mapping approaches, 
SAK approaches lend themselves to more efficient and 
perhaps more unbiased assessment of knowledge 

acquisition.  Instead of constructing a concept map 
individually using a pre-constructed blank map, SAK 
approaches require participants to make a judgement on 
the relatedness between two concepts.  SAK approaches 
are also not prone to aesthetic biases, such as the need to 
minimize links or contain no un-linked terms (Trumpower et 
al., 2010).  
     Procedurally, the SAK approach can be understood as 
three interrelated phases: knowledge elicitation, knowledge 
representation, and knowledge evaluation.  This paper 
considers the SAK approach using Pathfinder network 
analysis (Schvaneveldt, 1990), which is freely available 
and runs on any computer using Java Script 
(http://interlinkinc.net). 
     The knowledge elicitation phase consists of a 
participant rating the relatedness of two concepts from a 
list of key terms.  Each possible pairing is rated.  The 
number of concepts (n) is directly related to the number of 
concept pairs, n(n-1)/2.  The predictive validity of SAK (with 
exam performance) increases with the number of concepts 
but this must be balanced with the time to rate all possible 
pairs (Goldsmith et al., 1991). 
     From these ratings, the knowledge representation is 
constructed.  The Pathfinder network scaling algorithm 
transforms the ratings into both a mathematical and visual 
representation of the individual’s knowledge organization.  
The representation consists of nodes, one for each 
concept, and links, representing the relatedness between 
pairs of nodes.  The usefulness of the Pathfinder SAK 
method expands for both hierarchical and nonhierarchical 
relationships.  Additionally, the algorithm allows for group 
averaging of knowledge structures. 
     Finally, the Pathfinder program allows for knowledge 
evaluation, through the comparison between networks.  
The program computes a number of metrics of similarity 
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between networks (e.g., number of links in common, 
similarity), either at the group level or the individual level 
(see Schvaneveldt, 1990 for details on the Pathfinder 
method).  Previous studies have demonstrated that these 
metrics predict the progression of learning and decision-
making with a high degree of accuracy (Goldsmith et al., 
1991; Davis and Yi, 2004). 
     Trumpower and Vanapalli (in press) provides a rich and 
extensive review of a variety of uses for the SAK approach 
including using SAK as an instructional tool and as an 
assessment technique as in the current study.  However, 
as an example, Goldsmith et al. (1991) assessed SAK for 
research methods and statistics after a 16-week 
undergraduate-level course.  Pathfinder’s metric, number 
of links in common with the instructor, was a strong 
predictor of exam performance.  In another study, Wilson 
(1994) investigated SAK for chemical equilibrium in high 
achieving and low achieving senior high school physics 
students.  The high achieving group had fewer links than 
the low achieving group suggesting greater specificity in 
relationships and hierarchical organization. 
     Evidence of the validity of this Pathfinder SAK approach 
has demonstrated that the degree of similarity between a 
student and referent knowledge structure (e.g., expert) is 
correlated with common educational achievement 
indicators including course grades and exams (Goldsmith, 
et al., 1991).  More importantly, the similarity scores 
between learners and experts show a stronger correlation 
with higher-order educational outcomes (e.g., essay 
performance and complex problem solving) compared to 
lower-order outcomes, such as multiple choice responses 
(d’Appolonia et al., 2004). 
     Past research has considered use of SAK in multiple 
domains such as accounting (Curtis and Davis, 2003; Rose 
et al., 2007), chemistry (Wilson, 1994), computer 
programming (Trumpower et al., 2010), mathematics 
(Gomez et al., 1996; Davis et al., 2003), nursing (Azzarello, 
2007), physics (Chen and Kuljis, 2003; Trumpower and 
Sarwar, 2010), and research methods (Goldsmith et al., 
1991).  While SAK has been employed in cognitive 
neuroscience research, such as semantic networks in 
patients with amnesia (Chan et al., 1995), Alzheimer’s 
disease (Chan et al., 2001; Aronoff et al., 2006; Razani et 
al., 2010) and frontal lobe lesions (Sylvester and 
Shimamura, 2002), to date no study has focused on SAK 
applied to neuroscience concepts. 
     Therefore, the current study investigated the acquisition 
of neuroscience concepts covered in introductory and 
advanced undergraduate courses using SAK.  It was 
hypothesized that SAK would be effective in demonstrating 
knowledge acquisition for basic neuroscience information 
that was disseminated over a short period of time.  More 
explicitly, it was expected that participants’ conceptual 
maps, elicited by the SAK approach for basic neuroscience 
material, would look more like a prototypical expert’s map 
after instruction than before. 
 

MATERIALS AND METHODS 
Participants 
Sixty-three students participated in this study.  Students 

were recruited based on their enrollment in either an 
introductory psychology course (n = 29), introductory 
neuroscience course (n = 19) or an advanced behavioral 
neuroscience course (n = 15) in Fall 2014 or Spring 2015.  
These courses were selected because they cover gross 
brain anatomy (e.g., cerebellum) and neuronal physiology 
(e.g., depolarization).  Students received extra credit for 
their participation. 
 
Materials and Procedure 
JLS and JPB constructed a set of 15 concepts related to 
gross brain anatomy (i.e., amygdala, basal ganglia, 
cerebellum, cerebral cortex, cerebrospinal fluid, corpus 
callosum, forebrain, hindbrain, hippocampus, 
hypothalamus, medulla, midbrain, meninges, pons, and 
thalamus) and a set of 15 concepts related to neuronal 
physiology (i.e., action potential, axon hillock, axon 
terminal, dendrite, depolarization, ion channel, neuron, 
oligodendrocyte, receptor, resting potential, reuptake, 
salutatory conduction, summation, synapse, and threshold) 
that were covered in all three courses. 
     Two unique Pathfinder exercises were created (one for 
gross brain anatomy concepts and one for neuronal 
physiology).  Each exercise contained 210 concept pairs 
(i.e., all possible pairs for a set of 15 concepts, e.g., 
amygdala-basal ganglia and basal ganglia-amygdala).  The 
full set of concept pairs for each exercise is provided in a 
supplementary file.  For each concept pair, participants 
were asked to assign a rating based on their relatedness 
on a scale from 1 not related to 7 synonymous.  
Participants completed each Pathfinder exercise at two 
separate time points (prior to learning concepts and after 
learning concepts for an exam).  One expert (JPB) also 
completed the Pathfinder exercise for each set of concepts 
for comparison. 
     Participants’ ratings were recoded using a 5-point Likert 
scale ranging from 1 not related/slightly related (original 
rating 1), 2 somewhat related (original rating 2 or 3), 3 
moderately related (original rating 4 or 5), 4 most related 
(original rating 6), or 5 synonymous (original rating 7).  The 
Pathfinder network scaling algorithm was used to derive 
network relatedness ratings using JTarget and JPathfinder 
(open source software available from Interlink Inc. at 
interlinkinc.net).  JTarget was used to convert participants’ 
raw ratings into matrices which were then imported into 
JPathfinder.  JPathfinder compared individual participants’ 
networks (both pre- and post-learning) to the expert’s 
networks for gross brain anatomy and neuronal physiology.  
Figure 1 displays the pre- and post-learning networks of 
gross brain anatomy concepts in the introductory 
neuroscience course and the expert network for 
comparison. 
 
Data Analysis 

The number of links (i.e., connections between nodes) in 

common between the participant’s network and the expert 

comparison network was computed.  The maximum score 

for the links in common measure is the number of links in 

the reference knowledge structure.  In this study, the 

expert network comprised 83 links for gross brain anatomy 
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and 60 links for neuronal physiology. 
 
Introductory Neuroscience Course Pre-Learning 

 
Introductory Neuroscience Course Post-Learning 

 
Expert 

 
Figure 1.  Pathfinder maps for the students in the introductory 
neuroscience course pre- (top) and post-learning (middle) and 
expert (bottom) for gross brain anatomy concepts. 
 

     A more complex metric of similarity between the 
participant’s network and the expert comparison network 
was also computed: C / (Links1 + Links2 – C) where C 
refers to the number of links in common, Links1 refers to 
the total number of links in the participant network and 
Links2 refers to the total number of links in the expert 
network.  The similarity measure ranges from 0 no 
similarity in networks to 1 identical networks. 

     Two 3 x 2 x 2 mixed-design Analysis of Variance 
(ANOVA) were conducted to investigate the effects of 
course (introductory psychology, introductory 
neuroscience, or advanced neuroscience), time (pre- or 
post-learning), and material type (gross brain anatomy or 
neuronal physiology) on number of links in common with 
the expert network and overall similarity with the expert 
network.  Tukey HSD pairwise comparisons were used to 
follow-up on significant main effects of course and 
dependent-group t-tests were used to follow-up on 
significant interactions.  All analyses used p < 0.05 for 
statistical significance. 
 

RESULTS 
For the number of links in common (see Figure 2 and 
Table 1), there were significant main effects of course (F(2, 

60) = 9.37, p < 0.001, 
2

partial = 0.24), time (F(1, 60) = 

11.07,  p = 0.002, 
2

partial = 0.16), and material (F(1, 60) = 

54.23, p < 0.001, 
2
partial = 0.48).  There was also a 

significant interaction between time and material (F(1, 60) 

= 5.54, p = 0.02, 
2
partial = 0.08).  No other interactions were 

significant (all ps > 0.05).  

 

Figure 2.  Number of links in common with expert by course, time, 
and material.  Maximum number of links in common with the 
expert was 83 for gross brain anatomy and 60 for neuronal 
physiology.  Error bars represent ±1 SE.  *p ≤ 0.01, **p ≤ 0.001 

 

Course 
Gross Brain 

Anatomy 
Neuronal 

Physiology 

 Pre Post Pre Post 

Intro Psychology: M (SE) 34.24 
(2.33) 

40.93 
(1.72) 

29.48 
(2.28) 

31.14 
(2.27) 

Intro Neuroscience: M (SE) 30.63
(2.48) 

41.26
(2.04) 

27.84
(1.50) 

28.84
(1.63) 

Adv Neuroscience: M (SE) 44.93
(2.86) 

48.73
(2.18) 

34.13
(2.39) 

34.80
(1.28) 

Table 1.  Descriptive statistics for number of links in common with 
expert by course, time, and material.  The expert network 
comprised 83 links for gross brain anatomy and 60 links for 
neuronal physiology. 

 
     A similar pattern of results was found for the overall 
similarity in networks as shown in Figure 3 and Table 2.  
There were significant main effects of course (F(2, 60) = 

6.43, p = 0.003, 
2
partial = 0.18), time (F(1, 60) = 7.35, p = 

0.009, 
2
partial = 0.11), and material (F(1, 60) = 79.30, p < 



The Journal of Undergraduate Neuroscience Education (JUNE), Fall 2016, 15(1):A38-A43     A41 
 

0.001, 
2
partial = 0.57).  There was also a significant 

interaction between time and material (F(1, 60) = 5.87, p = 

0.02, 
2
partial = 0.09).  No other interactions were significant 

(all ps > 0.05). 
     Students in the advanced neuroscience course had 
significantly greater number of links in common and greater 
similarity with the expert compared with students in the 
introductory psychology (common links: p = 0.002; 
similarity: p = 0.02) or introductory neuroscience (common 
links: p < .001; similarity: p = 0.003) courses.  Students in 
the two introductory courses did not differ from one another 
(common links: p = 0.56; similarity: p = 0.62). 
 

 
Figure 3.  Overall similarity with network expert by course, time, 

and material.  Similarity is defined as C / (Links1 + Links2 – C) 
where C refers to the number of links in common, Links1 refers to 
the total number of links in the participant network and Links2 
refers to the total number of links in the expert network.  Error 
bars represent ±1 SE.  *p ≤ 0.05, **p ≤ 0.01. 

 

Course 
Gross Brain 

Anatomy 
Neuronal 

Physiology 

 Pre Post Pre Post 

Intro Psychology:   
M (SE) 

0.276 
(0.017) 

0.309 
(0.011) 

0.232 
(0.011) 

0.227 
(0.010) 

Intro Neuroscience: 
M (SE) 

0.245 
(0.018) 

0.313 
(0.018) 

0.216 
(0.008) 

0.230 
(0.009) 

Adv Neuroscience: 
M (SE) 

0.332 
(0.016) 

0.347 
(0.017) 

0.250 
(0.012) 

0.247 
(0.009) 

Table 2.  Descriptive statistics for overall similarity with expert by 

course, time, and material. 

 
     Students made significant gains in number of links in 
common and similarity with the expert in knowledge related 
to gross brain anatomy (common links: t(62) = -3.94, p < 
0.001, d = -0.50; similarity: t(62) = -3.14, p = 0.003, d =            
-0.40).  However, no gains were made in the number of 
links in common or similarity with the expert for knowledge 
related to neuronal physiology (common links: t(62) =          
-0.80, p = 0.43, d = -0.10; similarity: t(62) = -0.16, p = 0.87,    
d = -0.02). 

 
DISCUSSION 
Structural assessment of knowledge (SAK) effectively 
demonstrated knowledge acquisition as measured by 
number of links in common with the expert network and 
overall similarity with the expert network.  Moreover, 

students in both introductory and advanced neuroscience 
courses showed improvements in their SAK after short-
term dissemination.  However, significant changes were 
observed for gross brain anatomy, but not neuronal 
physiology, concepts.  More specifically, students achieved 
0.31 to 0.35 similarity scores with the expert network post-
learning of gross anatomy.  This is comparable to similarity 
ratings post-learning in other studies; for example, 0.30 
similarity between medical students and faculty for 
pulmonary concepts (McGaghie et al., 1996), 0.24 
similarity between nursing undergraduate students and 
their instructors for community nursing concepts (Azzarello, 
2007), and 0.38 similarity between high and low achieving 
physics high school students for chemical equilibrium 
(Wilson, 1994).  This provides evidence that SAK may be 
useful for both assessing knowledge of basic neuroscience 
concepts and the ability to think integratively as part of an 
outcomes assessment of a neuroscience curricula. 
     Given changes in SAK were not observed with neuronal 
physiology concepts, the effectiveness of SAK for 
assessment of knowledge acquisition may depend on the 
content and/or teaching style.  While SAK has been 
successfully used in multiple domains, it is possible that 
some topics lend themselves better to concept mapping 
than others.  Gross brain anatomy is likely taught in a 
hierarchical manner – the brain can be subdivided into the 
forebrain, midbrain, and hindbrain and the hindbrain is 
further subdivided into the cerebellum, pons, and medulla – 
which may facilitate concept mapping.  In contrast, 
neuronal physiology is likely taught in a dynamic manner 
focusing on the temporal order of events – if the neuronal 
membrane moves from resting potential to threshold, an 
action potential is initiated.  It is unclear whether the topic 
itself (neuronal physiology) or the teaching style (dynamic) 
hinders concept mapping.  Therefore, future studies should 
manipulate teaching style, for example by incorporating 
concept mapping during learning (i.e., SAK as a 
pedagogical activity; see Trumpower and Vanapalli, in 
press for a review), to determine if teaching style affects 
SAK.  Additionally, future research should consider other 
topics such as neuroscience methods and techniques to 
examine whether SAK depends on content. 

     The current study focused on basic neuroscience 

information that was disseminated over a short period of 

time.  As such, it was impractical to directly relate students’ 

performance in the class with changes in their SAK (i.e., 

exams covered more material).  In the future, short quizzes 

could be administered in conjunction with the post-learning 

Pathfinder exercise.  In addition, research could consider 

topics covered over a greater period of time.  For example, 

gross brain anatomy could be expanded to incorporate 

concepts related to both structure and function (e.g., 

hippocampus, prefrontal cortex, memory, attention) that 

are taught as part of a unit in a course (e.g., an 

introductory neuroscience course with a unit on higher-

order cognition) or over the course of an entire semester 

(e.g., an advanced course in cognitive neuroscience). 
     Relatedly, the scope of the current study explored the 
effectiveness of SAK for outcomes assessment, or 
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summative assessment.  However, as Trumpower and 
Vanapalli (in press) explain SAK can be used as a 
pedagogical activity, for formative assessment or for 
summative assessment.  A larger-scale study could 
incorporate SAK during learning as either a pedagogical 
activity (e.g., in a manipulation of teaching style) as well as 
SAK for formative assessment to help gauge students’ 
progress towards learning goals. 
     These learning goals may be summarized across the 
whole network as in the current study or expanded into 
much more specific network analysis of individual student 
networks.  Additionally, this methodology allows for the 
specific analysis of linkages between specific nodes.  If a 
class has missing links between nodes that are deemed 
critical by the faculty, the curriculum can be adjusted to 
focus on those specific relationships. 
     Finally, students’ networks were compared to a single 
individual’s network.  While some individuals may serve as 
excellent experts in constructing the expert SAK (Acton et 
al., 1994) and it is even possible to reliably assess concept 
maps without an expert (McClure et al., 1999), in general, 
multiple experts in the field should be used (Acton et al., 
1994).  However, given the interdisciplinary nature of 
neuroscience, research is needed on how to select the 
best experts.  Furthermore, it seems likely that experts 
should come from multiple disciplines including psychology 
and biology.  As this was not within the scope of the 
current study, JPB was selected as the expert due to his 
extensive experience teaching neuroscience and 
coordinating the neuroscience program. 
     As pointed out by a reviewer, it is also important to 
consider, that depending on the assessment goal, different 
experts may be needed.  If the goal is outcomes 
assessment of an individual course, either the course 
instructor or a set of faculty members from the department 
would be appropriate in constructing the expert SAK. 
However, if the goal is outcomes assessment of an entire 
program, a representative set of faculty members outside 
of the college (e.g., members of Faculty for Undergraduate 
Neuroscience) would be more desirable in constructing the 
expert SAK.  It is likely that the inclusion of multiple experts 
would alter the total number of links, and potentially the 
location of those links within the referent network, which 
will alter the results.  Acton et al. (1994) point out that a 
Pathfinder network based on the average of a number of 
“experts” will provide a more valid referent network 
compared to a single network.  As mentioned, this would 
be particularly interesting depending upon the objectives of 
the assessment goal. 
     Despite these limitations, this is the first study to 
demonstrate the effectiveness of SAK for basic 
neuroscience concepts.  Overall, these results suggest 
SAK is a promising method that could be used for 
outcomes assessment in the neuroscience classroom and 
merits further investigation. 
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