
The Journal of Undergraduate Neuroscience Education (JUNE), Fall 2015, 14(1):A74-A81

JUNE is a publication of Faculty for Undergraduate Neuroscience (FUN) www.funjournal.org

ARTICLE
A Series of Computational Neuroscience Labs Increases Comfort with MATLAB

David F. Nichols
Psychology Department, Roanoke College, Salem, VA 24153.

Computational simulations allow for a low-cost, reliable
means to demonstrate complex and often times
inaccessible concepts to undergraduates. However,
students without prior computer programming training may
find working with code-based simulations to be intimidating
and distracting. A series of computational neuroscience
labs involving the Hodgkin-Huxley equations, an Integrate-
and-Fire model, and a Hopfield Memory network were
used in an undergraduate neuroscience laboratory
component of an introductory level course. Using short
focused surveys before and after each lab, student comfort
levels were shown to increase drastically from a majority of

students being uncomfortable or with neutral feelings about
working in the MATLAB environment to a vast majority of
students being comfortable working in the environment.
Though change was reported within each lab, a series of
labs was necessary in order to establish a lasting high level
of comfort. Comfort working with code is important as a
first step in acquiring computational skills that are required
to address many questions within neuroscience.

 Key words: MATLAB; Computational simulations;
Hodgkin-Huxley equations; Integrate-and-Fire model;
Hopfield Memory network

Computational neuroscience simulations have repeatedly
been shown to be useful additions to undergraduate
neuroscience laboratory sections (Av-Ron et al., 2006;
Molitor et al., 2006; Bish and Schleidt, 2008; Stuart, 2009;
Schettino, 2014; Lewis, 2014). Reasons for their inclusion
have previously been given that they increase student
learning and are low-cost and doable at institutions without
extensive lab resources (Bish and Schleidt, 2008). They
also provide reliable outcomes (Lewis, 2014) though they
can incorporate variability to mimic biological realism
(Molitor et al., 2006; Schettino, 2014). Computer
simulations have been created previously for education
purposes and range from being professionally done and
distributed but closed off to direct manipulation by the end
user (e.g., Neurons in Action; Stuart, 2009), to being made
by the end user and produced for free sharing with a
polished graphical user interface (e.g., NeuroLab;
Schettino, 2014), to being simple, direct, code-based and
open to expansion and specialization (e.g., the current set
of simulations). Each of these and others created have a
lot to offer students and are useful in different ways. The
current paper does not seek to distinguish between them
regarding overall usefulness. Rather, the current study
addresses the concern that computational simulations
need to have a limiting graphical user interface in order for
students to be comfortable using them. This will be done
by demonstrating changes in students’ comfort levels
working directly with line-editable code.
 Computer simulation laboratories have tended towards
graphical user interfaces with values for particular variables
available in a subset of options (e.g., Davis, 2001; Molitor
et al., 2006; Schettino, 2014). Reasons given for this are
that they allow for a user-friendly interface (Stuart, 2009)
and hide parameters that students may need to determine
(Molitor et al., 2006). On the one hand a problem can arise
if not enough options are offered. That is, functionality may
be restricted such that the simulations are not sufficiently

adaptable to the particular needs of a given class. On the
other hand, they can become overly burdensome in their
display and choices if they offer too many options. The
alternative is to provide the end user (possibly best to be
considered the course instructor rather than the student)
with the opportunity to modify the code to fit the particular
needs of a class or assignment. This can be done with
line-editable computer programming software languages,
such as MATLAB, Octave, Python, C++, and Fortran. A
potential downside is that requiring students to edit
particular lines of code in order to get programs to replicate
the specific conditions for a given assignment question
may make them uncomfortable as it is often outside their
prior training. A potential upside is that they are afforded a
greater opportunity for exploration and a more powerful
means for adapting the specific conditions for follow-up
projects. Also, there is an increasing need for knowledge
of computer programming in the field of neuroscience.
 The current set of labs involves the use of MATLAB, a
powerful command-line programming language often used
in neuroscience research. The exercises are structured to
explain the basic parts of the code in a lab protocol and to
walk the students through which lines of code need to be
modified for which portions of the lab. The students
primarily modify the values of a select and specified set of
lines of code and then record the output onto a data note
sheet. Prior to the lab period ending, students then
complete questions pertaining to the simulations during the
lab period and as a small group (2-3 students). Students’
comfort level was assessed before and after each of the
labs.

MATERIALS AND METHODS
Course: PSYC/NEUR 330: Principles of Neuroscience
Laboratory met once a week for 1.5 hours in the spring
2015 semester as a required companion to the lecture
based course that met three times a week for a total of

The Journal of Undergraduate Neuroscience Education (JUNE), Fall 2015, 14(1):A74-A81 A75

three hours per week. The lab and the course were taught
by different instructors, both out of the psychology
department. The course is a requirement within the
neuroscience concentration and an elective within the
psychology major. It serves as a pre-requisite for
PSYC/NEUR 430: Research Seminar in Neuroscience and
NEUR 406: Independent Study in Neuroscience, one of
which is required to complete the neuroscience
concentration. Both the course and the lab used
Neuroscience: Exploring the Brain, 3

rd
 Ed., by Bear,

Connors, and Paradiso (2007).

Students: The class began with 24 students (18 females)
and concluded with 22 students (16 females). There were
15 psychology majors, three biology majors, two health
and exercise science majors, two who were undecided on
their major, and two international exchange students
without information on major or year. This distribution is
similar to other neuroscience related courses taught out of
psychology departments (Wolfe, 2009). Of the non-foreign
students, two were seniors, four were juniors, 13 were
sophomores, and three were freshmen. The two students
who dropped were both sophomore psychology majors.
Students were assigned to groups of three after filling out a
questionnaire on prior classes and which other students
they would or would not like to work with. Students
remained in these groups throughout the semester.

Software: All computer simulations were run using
MATLAB R2013b. MATLAB requires purchase through an
educational license in order to be used in classroom
settings (http://www.mathworks.com/academia/). The lab
code was saved in script files within lab specific folders on
laptops provided to the students. The code was also
available on a course specific website for download if
students needed to complete the exercises outside of class
in a computer lab on campus. The MATLAB software
environment presents the experimental code in an editor
window that can be opened directly by clicking on the
correct file in the provided folder. Students are then asked
to save the file immediately while renaming it to include the
initials of all group members. The file could then be turned
in after completion of the lab as part of required
participation/data storage credit.
 The program is run directly from the editor window and
generally results in the creation of a figure window with
task specific data curves. From within the figure window
students are often provided with relevant information
pertaining to the current simulation in text format, such as
the input current, and they can determine additional output
information using figure tools, such as the data cursor.
There exists a separate command window that allows for
the output of results, such as the maximum value of a
curve, as well as single lines of commands that students
can enter in order to access information about variables,
such as the membrane leakage resistance for a particular
version of the model.

Labs: Overview Across the whole semester there were a
total of 12 lab periods, 10 that had specific labs the

students completed and two involving aspects of their
research proposal projects. The student labs consisted of
a mixture of computer simulations and also hands-on data
collection. This paper focuses on the computer simulation
labs that took place during weeks 2, 4, and 8.
 The timing of the labs corresponded with the timing of
the course content with a particular emphasis made to
perform the labs prior to the relevant information being
included on the course exams. To that end, simulations of
the Hodgkin-Huxley equations were done during lab 2 and
took place prior to exam 1, simulations of the Integrate-
and-Fire model were done during lab 4 and took place prior
to exam 2, and simulations of Hopfield Memory Networks
were done during lab 8 and took place prior to exam 3.
The duration of the labs varied based on the amount of
material covered but also based on the speed at which
particular student groups were able to work through the
required material. In general, the completion of the
protocol was timed to take from 30 to 50 minutes with an
additional 15 to 30 minutes required to complete group
questions, leaving sufficient time to put away the
equipment and complete short (~5 minutes) pre- and post-
lab surveys in the 90 allotted minutes. The primary focus,
structure, and group exercises of each of the three labs will
be discussed below.
 Hodgkin-Huxley Model The Hodgkin-Huxley equations
(Hodgkin and Huxley, 1952) were used to focus on the
concepts of spike thresholds, spike rate, and how ion-
specific membrane conductances relate to the different
phases of an action potential. This material is often
covered early in introductory neuroscience courses (it is
Chapter 4 in the course textbook). It was done the week
after the initial lab that used a hands-on demonstration of
action potential spiking with a Spiker Box
(https://backyardbrains.com/; Marzullo and Gage, 2012)
which had a focus of spike rates and action potentials as
electrical phenomena. Students were provided with a fully
functioning set of code to use in the labs and a written
protocol that they were required to read prior to coming to
lab (see supplementary materials). Students were initially
introduced to the code by opening up the relevant file and
then running the program.
 The protocol walked students through the process of
modifying one or two variables at a time in order to
visualize the effect on spiking behavior of the model
neuron. For spike thresholds, students were instructed to
change the level of input current to a value well below
threshold (e.g., “Change line 8 to ‘I=0.01’; and hit run.”) that
would result in a time course of the membrane voltage
without a clear spike (see Figure 1A). They were then
instructed to increase the input current incrementally until
they reached a current level for which a single spike
occurred (see Figure 1B) and to record that value on their
data note sheet. Following this they were instructed to
continue to increase the input current incrementally until a
second spike occurred (see Figure 1C) and record that
value on their data note sheet. Though the instructions
allowed for an answer to be found in an algorithmic manner
by repeatedly increasing by a small step size, students
were free to locate the threshold values by jumping the

Nichols A Series of Computational Labs A76

Figure 1. Representative outputs for different components of the Hodgkin-Huxley lab. The line each graph represents the membrane
potential for the first 30 ms of simulation. A. For subthreshold levels of input current (e.g., 0.02), there is no action potential. B. For

higher levels of input current (e.g., 0.05) there is only a single action potential. The threshold for the first action potential is at a
somewhat lower level. C. For even higher levels of input current (e.g., 0.10), there are repetitive action potentials at a constant firing
rate. D. The timing of the action potentials can be found using the data cursor (represented by the circles) based on the X value of the
data plot. E. The effects of minimizing the permeability of the membrane to potassium only can be seen by recording the membrane
voltage (Y) near the peak level and then at the stabilized level. F. The effects of minimizing the permeability of the membrane to
sodium only can be seen by comparing the membrane potential (Y) near the peak level to the peak level in the original equations (D).

current levels by varying amounts and often started doing
so as they progressed through the exercises.
 In addition to visualizing qualitative changes in the
model output, students engaged in exercises to record
quantitative changes in output. For spike rates, the input
current was set at a value above the threshold for
generating two spikes and then the data cursor component
of the figure window was first used to locate the timing of
one spike, then the timing of the other spike (see Figure
1D). These values were recorded on the data note sheet
for later conversion to firing rates. To complete the
exercise, students were instructed to increase the input
current to higher levels in order to determine a maximum
firing rate for the model. For ion-specific membrane
conductance, students were required to modify one of the
lines of code specifying the membrane conductance for a
particular ion (e.g., "Change line 9 to ‘gbarNa=0’") and then
change the input current to pre-specified values.
Quantitative measures of the effect this had on particular
phases of the action potential were taken again using the
data cursor but this time based on the initial rise in
membrane potential and later settling value for when there
was no potassium conductance (see Figure 1E) and when
there was no sodium conductance (see Figure 1F).
 Integrate-and-Fire Model A simple version of an
integrate and fire neuron (Abbot, 1999) was used to focus
on the concepts of post-synaptic potentials and temporal
summation in addition to reviewing concepts of firing rates

and action potentials as electrical phenomena. This lab
was done the week after a hands-on lab with an emphasis
on firing rate and conduction velocity using human
electromyography and corresponded to content covered in
Chapters 4 and 5 of the textbook. There was intentional
repetition of quantitative and qualitative data analysis
techniques involving recording the time between spikes for
firing rates and thresholds of initial spikes as these
techniques were considered key concepts and foundational
research skills.
 Specific code was created to explore the concepts of
excitatory post-synaptic potentials (EPSPs) and inhibitory
post-synaptic potentials (IPSPs) separately. This was
done in order to create topic specific graphs that focused in
on the concept of interest for a specific portion of the
exercise. For EPSPs, the code allowed for the
independent specification of the magnitude, i.e., input
current, and timing, i.e., relative delay, of two short duration
(2 ms) inputs. This was used to demonstrate how two very
large EPSPs would not require temporal summation in
order to reach threshold (see Figure 2A), but that two
smaller EPSPs would not result in an action potential (see
Figure 2B) unless they were sufficiently close together in
time (see Figure 2C).
 The variables of the model, such as capacitance and
leakage resistance, were also modified to demonstrate the
role they play in temporal summation. Students recorded
the threshold level for the input current or time delays that

X: 2.24

Y: 45.88

X: 17.12

Y: 37.44

Time (ms)

V
o

lt
a

g
e

V
o

lt
a

g
e

X: 0.88

Y: -10

X: 20.08

Y: -45.1

Time (ms)

X: 1.68

Y: 54.57

X: 20.08

Y: 13.22

Time (ms)

BA C

ED F

The Journal of Undergraduate Neuroscience Education (JUNE), Fall 2015, 14(1):A74-A81 A77

Figure 2. Representative outputs for the temporal summation
component of the Integrate-and-Fire lab. The line in the top row
of graphs represents the membrane voltage for the first 100 ms of
simulation and the line in the bottom row of graphs corresponds
to the magnitude and time course of the EPSPs. A. An action
potential occurs after each high magnitude EPSP (e.g., 7). B. For

medium levels of EPSP (e.g., 4) at the same temporal distance
apart as in (A), no action potentials occur. C. For medium levels

of EPSPs (e.g., 4) that occur closer together in time, a single
action potential occurs due to temporal summation.

were required to result in action potentials. For IPSPs, the
code was primarily set up to manipulate the timing of a
transient change in the leakage resistance that served to
abolish any buildup of membrane potential towards
threshold, i.e., shunting inhibition. This was used to
demonstrate that IPSPs that occur prior to the EPSPs (see
Figure 3A) or after both of the EPSPs (see Figure 3C) have
no effect on temporal summation, but those that occur
between the EPSPs do not allow for temporal summation
to occur (see Figure 3B). Students systematically changed
the variable controlling the time of the IPSP and recorded
the range of time for which the IPSPs resulted in an action
potential not occurring.
 Hopfield Memory Network Model A minimal version of
the Hopfield memory network (Hopfield, 1982) was used to
demonstrate the principles of neural networks and memory
retrieval. It is essentially based on the principles of
Hebbian learning in the establishment of connections
between nodes of the network such that the nodes that are
regularly on or off together within a particular set of
memories will have stronger synaptic connections than
nodes that are uncorrelated. However, the basic Hopfield
memory network is focused to a much greater degree on
memory retrieval than memory formation/learning, as the
synaptic connections are entirely determined by the set of
memories presented to the network and remain constant.
The simulations that evolve over time are based on the
updating of the states of the nodes from an initial input
state towards a stable memory state. Along those lines,
the lab itself was primarily focused on determining the
robustness of the memory network in the correct retrieval
of memories in relation to different levels of input noise.
The protocol and lab questions included sections on
Hebbian learning in relation to the functioning of the neural
network.
 Different sets of code were set up that involved different
numbers of memories with distinct tasks associated with

Figure 3. Representative outputs for the shunting inhibition
component of the Integrate-and-Fire lab. The line in the top row
of graphs represents the membrane voltage for the first 100 ms of
simulation, the line in the middle row of graphs represents the
magnitude and time course of the EPSPs, and the line in the
bottom row of graphs represents the time course of the IPSPs as
a complete shunting of all membrane voltage. A. The timing of

the IPSP (5 ms) is before the first EPSP (10 ms) and temporal
summation is possible. B. The timing of the IPSP (20 ms) is in
between the first EPSP (10 ms) and the second EPSP (30 ms)
and temporal summation does not occur. C. The timing of the

IPSP (35 ms) is after the second EPSP (30 ms) and temporal
summation is possible.

each number of memories. The initial code had four
memories visually represented as black letters on a white
background. This code primarily involved walking students
through the basics of how the network functioned. This
included a demonstration of how small numbers of errors
from the initial state (e.g., two out of 25 neurons having
reversed on/off states; see Figure 4A) resulted in the
successful retrieval of the memory in the stable state of the
network whereas large numbers of errors from the initial
state (e.g., 10 out of 25 neurons having reversed on/off
states; see Figure 4B) resulted in an incorrect memory
state being stabilized. This also included students setting
their own criterion for how the performance would be
evaluated by setting thresholds that defined whether the
model worked for a given level of noise based on the
percentage of matching nodes and/or the percentage of
exact memory matches. In order to quantitatively measure
this, a related but distinct set of code was run that
conducted 10,000 simulations (which takes only a few
seconds) and reported the overall performance of the
network (based on the proportion of matching nodes and
the relative frequency of exact matches).
 The next set of code had two memories and primarily
involved students making educated guesses about how
well the memory system would perform based on different
pairs of memories (see Figure 5) in relation to what they
had thus far learned in the lab in regards to the synaptic
connections of the neural network. Students essentially

Nichols A Series of Computational Labs A78

make their choice based on whether memories will be
successfully retrieved more frequently if there are higher or
lower amounts of consistent node states between the
pairs. The amount of consistent node states is provided for
them numerically in the command window in addition to the
visual representation shown in a figure window. The final
set of code had six memories with the students required to
choose a pattern of on/off node states to represent two
new memories of their choosing and then enter them into
the code at clearly marked locations. Following this the
same procedure was conducted as in earlier portions of the
exercise whereby the network was simulated 10,000 times
and the output was reported in the command window for
students to enter into their data note sheets.

Figure 4. Example outputs of the Hopfield Memory Network lab.

Each graph shows the activation for 25 nodes in a 5x5 grid where
white indicates a particular node is “on” and black indicates a
particular node is “off.” The initial state refers to the input prior to
noise and is the correct state for the network to end up in if it
successfully retrieves the memory. The error state shows how a
subset of the nodes are flipped from the initial state and is the
actual input to the memory network. The stable state is the
output of the memory network. The network clearly worked if the
stable state exactly matches the initial state and clearly did not
work if a different memory state was retrieved. A. The typical

performance based on 4 memories and a low level of noise (2
flips) with the stable state matching the initial state. B. The typical

performance based on 4 memories and a high level of noise (10
flips) with the stable state clearly different from the initial state.

Figure 5. The pattern of network activation for the two memory

exercise within the Hopfield Memory Network lab. Students were
instructed to pay attention to the relative overlap in the patterns
for Pair 1 (D vs. M) and Pair 2 (J vs. C).

Surveys: In order to document the level of how

comfortable students were with the MATLAB environment
and assess the amount of student learning on certain key
concepts, short surveys were passed out and voluntarily
completed at the beginning and end of each lab section.
The pre-lab surveys each contained three questions with a
consistent format. The first two questions pertained to the
level of understanding for key concepts to be covered in
the lab with responses on a scale from 0 (no

understanding) to 10 (complete understanding) with only
the extreme values labeled. The last question pertained to
how comfortable the students were with the hardware or
software utilized in that day’s lab with responses on a scale
from -5 (very uncomfortable) through 0 (neutral) to 5 (very
comfortable) with only those three values labeled. The
post-lab survey repeated the three questions from the pre-
lab survey and for each of those questions students were
also asked how much the current lab influenced their
understanding or comfort on a scale from -5 (understand it
much less/much less comfortable) through 0 (no change)
to 5 (understand it much more / much more comfortable)
with only those three values labeled.
 The questions pertaining to level of understanding of
concepts were lab specific whereas the final question
relating to comfort levels on the software was identical
across all three labs. For the Hodgkin-Huxley lab, the
concept questions were “How well do you understand the
concept of thresholds for generating action potentials?”
and “How well do you understand the concept of different
ions influencing parts of action potentials?”. For the
Integrate-and-Fire lab, the concept questions were “How
well do you understand the concept of thresholds for
generating action potentials?”, which was a repeat from the
Hodgkin-Huxley lab, and “How well do you understand the
concept of EPSPs and IPSPs in relation to action
potentials?”. For the Hopfield Memory Network lab, the
concept questions were “How well do you understand the
concept of memory storage in neural networks?” and “How
well do you understand the concept of retrieval failure in
neural networks?”. For all three labs, the final question
was “How comfortable are you with using MATLAB – a
command line computer programming software language?”
 Students were informed at the beginning of the
semester via email and in the class and reminded
repeatedly throughout the semester that participation in the
surveys was voluntary and would in no way affect their
grades on the labs. Student names were included on the
surveys in order to pair the pre-lab surveys with the post-
lab surveys and to track changes in responses across labs.
However, the surveys were inputted into an Excel sheet
without the corresponding student names and the faculty
member did not review the responses of the students until
after the semester was completed. This data collection
was approved by the Internal Review Board of Roanoke
College.

RESULTS
There were 23 students in the course for labs 2 and 4 and
22 students for lab 8. All 23 students completed the pre-
and post-surveys for lab 2 (Hodgkin-Huxley equations).
While 22 students completed the pre-survey for labs 4
(Integrate-and-Fire model) and 8 (Hopfield Memory
network), only 21 completed the post-survey. Only 18
students completed all six surveys. Analyses were done
with t-tests for individual survey questions based on all
students who completed that particular question and
Repeated Measures ANOVAs for sets of questions based
on only the subset of students who completed all relevant
questions. Reports of significance are based on α=0.05.

The Journal of Undergraduate Neuroscience Education (JUNE), Fall 2015, 14(1):A74-A81 A79

Comfort with MATLAB: As MATLAB was used
consistently across all three computer simulation labs, the
same question was asked for all six surveys regarding how
comfortable the student was with using MATLAB at the
time that the survey was taken. Additionally, for all three
post-lab surveys, the same question was asked regarding
how much they felt that particular lab influenced their
comfort level. The level of comfort that students would
come into the course with was expected to be fairly low
based on anecdotal student reactions to similar labs in a
previous semester. A somewhat low initial comfort level
would allow for increases or decreases in the level of
comfort across the semester. Measuring comfort level
across multiple labs also allows for student comfort levels
to remain constant or show saturation after a limited
number of labs on an individual basis.
 95% confidence intervals for the level of self-reported
comfort on a scale from -5 (very uncomfortable) through 0
(neutral) to 5 (very comfortable) on each lab survey are
shown in the left portion of Figure 6A. Clearly evident in
the graph is that students on average started off not
significantly different from a neutral comfort level for lab 2

(=-0.8, t(22)=-1.40, p=0.174) and lab 4 (=0.7, t(21)=1.33,
p=0.197), but they were comfortable at the start of lab 8
(=2.2, t(21)=5.73, p<0.001). By the end of each of the
labs, however, the comfort level was significantly above
neutral (’s>2.1, t’s(20)>5.6, all p’s<0.001).
 In order to assess differences between the labs, a 2x3
Repeated Measures ANOVA was run with the time of the
survey (pre, post) and the week of the lab (2, 4, 8) as
factors. Mauchly’s Test of Sphericity indicated that the
assumption of sphericity was violated for both the week of
the lab factor (Χ

2
(2)=13.35, p=0.001) and the interaction

(Χ
2
(2)=6.61, p=0.037). Therefore, the Lower-bound

correction with the degrees of freedom reduced by half will
be reported as a highly conservative correction. There was
a main effect of time of the survey (F(1,18)=75.553,
p<0.001) with post-lab ratings on average 2.14 rating
points higher than pre-lab ratings. There was also a main
effect of week of the lab (F(1.0,36)=12.729, p=0.002)
explained by a linear effect (F(1,18)=21.695, p<0.001)
wherein the comfort level increased across the labs.
Comfort levels increased from lab 2 to lab 4 by 1.08 rating
points (p=0.049) and from lab 4 to lab 8 by 1.00 rating
points (p<.001). Furthermore there was an interaction
effect (F(1.0,36)=4.867, p=0.041) explained by a linear
effect (F(1,18)=14.329, p=0.012) wherein the difference in
pre-post comfort level decreased as a function of the week
of the lab. The difference in comfort levels for lab 2 was
2.94 rating points, for lab 4 was 2.26 rating points, and for
lab 8 was 1.21 rating points.
 In addition to the difference in comfort levels between
the pre and post surveys, data was also collected on how
much students felt that each particular lab influenced their
comfort level. As can be seen in the right portion of Figure
6A, the students on the whole reported that each lab
resulted in a positive change in their comfort level (’s>2.6,
t’s(20)>8.0, all p’s<0.001). In order to compare across
labs, a one-way Repeated Measures ANOVA was run.
Since the assumption of sphericity was again violated

Figure 6. Results of questions pertaining to the self-reported

comfort level working with the MATLAB programming language.
A. The set of bars on the left shows the level of comfort before

and after the labs were completed averaged across all students.
The scale is from Very Uncomfortable (-5) through Neutral (0) to
Very Comfortable (5). The bars on the right show the degree to
which students felt that week’s lab contributed to their level of
comfort with MATLAB. The scale is from Much Less Comfortable
(-5) through No Change (0) to Much More Comfortable (5). Error
bars indicate the 95% confidence interval for each of the separate
survey questions. B. Frequency distribution of students across

comfort levels before the first computational simulation lab (Lab 2
pre) and at the end of the final computer simulation lab (Lab 8
post). The scale is from Very Uncomfortable (-5) through Neutral
(0) to Very Comfortable (5).

(Χ

2
(2)=7.21, p=0.027), the marginally significant main

effect of week of the lab (Lower-bound correction:
F(1.0,36)=3.814, p=0.067; Sphericity assumed:
F(2,36)=3.814, p=0.031) needs to be considered with
caution. Similarly, though a linear trend was again
indicated (F(1,18)=4.80, p=0.042), neither the change from
3.53 to 3.00 for labs 2 and 4 (p=0.086) nor from 3.00 to
2.68 for labs 4 and 8 (p=0.187) was statistically significant.
Overall this indicates that there was a less consistent
relationship between the week of the lab and how much
students reported that each lab contributed to their comfort
level than in the observed difference in the pre- vs. post-lab
comfort levels. This could be explained by students
believing that each lab improved their comfort levels even
as they ran out of room to convey that difference in the pre-

Nichols A Series of Computational Labs A80

vs. post-lab comfort levels. That is, reporting change after
each lab may be helpful in avoiding ceiling effects when
just considering differences in the pre- vs. post-lab comfort
levels.
 The above analysis demonstrates that comfort levels
with MATLAB increased within each of the labs and across
the sequence of labs. To further illustrate this, the
distribution of reported comfort levels for the first survey
and last survey are shown in Figure 6B. A substantial
proportion of the students (11/23) reported being
uncomfortable using MATLAB prior to the first
computational simulation lab whereas nearly all (20/21)
reported being comfortable after the final computational
simulation lab. The trend for a decrease in the amount that
each week’s lab contributed to a student’s overall comfort
level could then be expected to be due to an increase in
the number of students who were comfortable with
MATLAB at the start of each lab.

Understanding of concepts: For each of the labs,

questions were asked about the level of understanding of
two specific key concepts and also about the contribution
of that particular lab to their level of understanding. The
timing of the labs was such that relevant concepts had
already been covered in the lecture portion of the class for
labs 2 and 4 but not for lab 8. Correspondingly, the self-
reported level of understanding of the two concepts on the
pre-surveys was relatively high for labs 2 and 4 (7.0, 7.2,
7.4, and 6.3, respectively, on a scale from 0 to 10) and
lower for lab 8 (4.8 and 5.9). Still, there was a significant
increase in the rating scales for the pre- to post-lab levels
of understanding for all concept questions (’s>0.8,
t’s(20)>2.7, all p’s<0.02) and students reported that each
lab increased their level of understanding on that concept

(’s>2.1, t’s(20)>7.9, all p’s<0.001).

DISCUSSION
Students in neuroscience come from a broad range of

majors, many of which do not require computer science

courses. Therefore, it is worth considering what factors

may contribute to how quickly and to what degree students

can become comfortable working with code. Based on the

starting and ending levels of comfort, it can be inferred that

inexperience working with code is not a hindrance to using

it during labs and that a series of labs is likely useful for

increasing comfort levels. It is an encouraging sign that

students can become comfortable with code-based

exercises as computational thinking is a foundational skill

required for the next generation of scientists (Wing, 2006).

 The rate at which comfort level changes could be

influenced by whether labs are completed individually or in

groups, with the group size a further contributing factor.

Here groups were generally three people though

occasionally groups of two were used due to students

dropping the course or being absent. Groups were

encouraged to alternate which student was primarily in

charge of controlling the MATLAB program as the lab was

completed, and anecdotally it seemed that controlling the

program helped increase student comfort level more than

simply watching another student use the program due to

an increase in active engagement.
 One of the proposed benefits of computational
simulation labs is that they can be inquiry-based,
hypothesis-driven exercises (Crisp, 2012; Lemons, 2012;
Lewis 2014). The current set of labs is largely protocol
driven and not inquiry-based, but that is in part due to the
small amount of time (90 minutes) allotted to the lab
periods. For a longer lab period (2-3 hours), it is entirely
conceivable that the first half could be devoted to
familiarizing students with the computational models using
a protocol and that the second half could be devoted to
answering an empirical question of the students’ choosing.
The neuroscience curriculum at Roanoke College requires
a semester long research project, so the inquiry-based
training is largely done at that time rather than during the
lab component of the introductory level course.
 Computational simulations are a worthwhile and helpful
component of an undergraduate neuroscience lab course
(Lewis, 2014). They are inherently reliable since the
results will consistently come out the same when the same
values are put into the model equations, which cannot be
said for hands-on neuroscience with live animals, though
stochastic noise can also be added to the equations in
order to approach biological realism. They are valid in so
much as they truly represent the principles being
simulated, which cannot be guaranteed with hands-on
neuroscience when artifacts are possible in the data due to
the equipment or experimenter error. A benefit of code-
based simulations in relation to compiled simulations is that
they are adaptable such that the activities can be easily
modified to fit the expectations/concepts covered in a
particular class. MATLAB in particular is a powerful yet
approachable programming environment with a low cost in
comparison to standard hands-on neuroscience
equipment, but Python is an adequate alternative for
programs without the budget to purchase MATLAB or with
faculty already familiar with working in Python. Students
are likely to be amenable to becoming familiar and
comfortable with whatever coding software is used in the
labs. Early exposure can lead to future opportunities to
further knowledge using code, such as in undergraduate
research projects, graduate school, or jobs.

Supplementary Materials
The MATLAB code, all associated assignment files,
descriptions of the assignment files, and links to resources
for comparable Python code can be found at the author’s
faculty page:
https://directory.roanoke.edu/faculty?username=dnichols.

REFERENCES

Abbott (1999) Lapicque’s introduction of the integrate-and-fire
model neuron (1907). Brain Res Bull 50:303-304.

Av-Ron E, Byrne JH, Baxter DA (2006) Teaching basic principles
of neuroscience with computer simulations. J Undergrad
Neurosci Educ 4:A40-A52.

Bish JP, Schleidt S (2008) Effective use of computer simulations
in an introductory neuroscience laboratory. J Undergrad
Neurosci Educ 6:A64-A67.

The Journal of Undergraduate Neuroscience Education (JUNE), Fall 2015, 14(1):A74-A81 A81

Crisp KM (2012) A structured-inquiry approach to teaching
neurophysiology using computer simulation. J Undergrad
Neurosci Educ 11:A132-A138.

Davis MJ (2001) Basic principles of synaptic physiology illustrated
by a computer model. Adv Physiol Educ 25:1-12.

Hodgkin AL, Huxley AF (1952) A quantitative description of
membrane current and its application to conduction and
excitation in nerve. J Physiol 117:500-544.

Hopfield JJ (1982) Neural networks and physical systems with
emergent collective computational abilities. Proc Natl Acad Sci
USA 79:2554-2558.

Lemons ML (2012) Characterizing mystery cell lines: student-
driven research projects in an undergraduate neuroscience
laboratory course. J Undergrad Neurosci Educ 10:A96-A104.

Lewis DI (2014) The pedagogical benefits and pitfalls of virtual
tools for teaching and learning laboratory practices in the
biological sciences. The Higher Education Academy: STEM.

Marzullo TC, Gage GJ (2012) The SpikerBox: a low cost, open-
source bioamplifier for increasing public participation in
neuroscience inquire. PLoS ONE 7:e30837.

Molitor SC, Tong M, Vora D (2006) MATLAB-based simulation of
whole-cell and single-channel currents. J Undergrad Neurosci
Educ 4:A74-A82.

Schettino LF (2014) NeuroLab: a set of graphical computer
simulations to support neuroscience instruction at the high
school and undergraduate level. J Undergrad Neurosci Educ
12:A123-A129.

Stuart AE (2009) Teaching neurophysiology to undergraduates
using Neurons in Action. J Undergrad Neurosci Educ 8:A32-
A36.

Wing JM (2006) Computational thinking. Commun ACM 49:33-35.
Wolfe U (2009) Successful integration of interactive neuroscience

simulations into a non-laboratory Sensation & Perception
course. J Undergrad Neurosci Educ 7:A69-A73.

Received August 05, 2015; revised September 24, 2015; accepted
September 29, 2015.

The author thanks Dr. Darcey Powell for her input on the construction of
the surveys and comments on an earlier version of the manuscript.

Address correspondence to: Dr. David F. Nichols, Psychology
Department, 221 College Lane, Roanoke College, Salem, VA 24153.
Email: dnichols@roanoke.edu

Copyright © 2015 Faculty for Undergraduate Neuroscience
www.funjournal.org

