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Computational simulations allow for a low-cost, reliable 
means to demonstrate complex and often times 
inaccessible concepts to undergraduates.  However, 
students without prior computer programming training may 
find working with code-based simulations to be intimidating 
and distracting.  A series of computational neuroscience 
labs involving the Hodgkin-Huxley equations, an Integrate-
and-Fire model, and a Hopfield Memory network were 
used in an undergraduate neuroscience laboratory 
component of an introductory level course.  Using short 
focused surveys before and after each lab, student comfort 
levels were shown to increase drastically from a majority of 

students being uncomfortable or with neutral feelings about 
working in the MATLAB environment to a vast majority of 
students being comfortable working in the environment.  
Though change was reported within each lab, a series of 
labs was necessary in order to establish a lasting high level 
of comfort.  Comfort working with code is important as a 
first step in acquiring computational skills that are required 
to address many questions within neuroscience. 
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Computational neuroscience simulations have repeatedly 
been shown to be useful additions to undergraduate 
neuroscience laboratory sections (Av-Ron et al., 2006; 
Molitor et al., 2006; Bish and Schleidt, 2008; Stuart, 2009; 
Schettino, 2014; Lewis, 2014).  Reasons for their inclusion 
have previously been given that they increase student 
learning and are low-cost and doable at institutions without 
extensive lab resources (Bish and Schleidt, 2008).  They 
also provide reliable outcomes (Lewis, 2014) though they 
can incorporate variability to mimic biological realism 
(Molitor et al., 2006; Schettino, 2014).  Computer 
simulations have been created previously for education 
purposes and range from being professionally done and 
distributed but closed off to direct manipulation by the end 
user (e.g., Neurons in Action; Stuart, 2009), to being made 
by the end user and produced for free sharing with a 
polished graphical user interface (e.g., NeuroLab; 
Schettino, 2014), to being simple, direct, code-based and 
open to expansion and specialization (e.g., the current set 
of simulations).  Each of these and others created have a 
lot to offer students and are useful in different ways.  The 
current paper does not seek to distinguish between them 
regarding overall usefulness.  Rather, the current study 
addresses the concern that computational simulations 
need to have a limiting graphical user interface in order for 
students to be comfortable using them.  This will be done 
by demonstrating changes in students’ comfort levels 
working directly with line-editable code. 
     Computer simulation laboratories have tended towards 
graphical user interfaces with values for particular variables 
available in a subset of options (e.g., Davis, 2001; Molitor 
et al., 2006; Schettino, 2014).  Reasons given for this are 
that they allow for a user-friendly interface (Stuart, 2009) 
and hide parameters that students may need to determine 
(Molitor et al., 2006).  On the one hand a problem can arise 
if not enough options are offered.  That is, functionality may 
be restricted such that the simulations are not sufficiently 

adaptable to the particular needs of a given class.  On the 
other hand, they can become overly burdensome in their 
display and choices if they offer too many options.  The 
alternative is to provide the end user (possibly best to be 
considered the course instructor rather than the student) 
with the opportunity to modify the code to fit the particular 
needs of a class or assignment.  This can be done with 
line-editable computer programming software languages, 
such as MATLAB, Octave, Python, C++, and Fortran.  A 
potential downside is that requiring students to edit 
particular lines of code in order to get programs to replicate 
the specific conditions for a given assignment question 
may make them uncomfortable as it is often outside their 
prior training.  A potential upside is that they are afforded a 
greater opportunity for exploration and a more powerful 
means for adapting the specific conditions for follow-up 
projects.  Also, there is an increasing need for knowledge 
of computer programming in the field of neuroscience. 
     The current set of labs involves the use of MATLAB, a 
powerful command-line programming language often used 
in neuroscience research.  The exercises are structured to 
explain the basic parts of the code in a lab protocol and to 
walk the students through which lines of code need to be 
modified for which portions of the lab.  The students 
primarily modify the values of a select and specified set of 
lines of code and then record the output onto a data note 
sheet.  Prior to the lab period ending, students then 
complete questions pertaining to the simulations during the 
lab period and as a small group (2-3 students).  Students’ 
comfort level was assessed before and after each of the 
labs. 
 

MATERIALS AND METHODS 
Course: PSYC/NEUR 330: Principles of Neuroscience 
Laboratory met once a week for 1.5 hours in the spring 
2015 semester as a required companion to the lecture 
based course that met three times a week for a total of 
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three hours per week.  The lab and the course were taught 
by different instructors, both out of the psychology 
department.  The course is a requirement within the 
neuroscience concentration and an elective within the 
psychology major.  It serves as a pre-requisite for 
PSYC/NEUR 430: Research Seminar in Neuroscience and 
NEUR 406: Independent Study in Neuroscience, one of 
which is required to complete the neuroscience 
concentration.  Both the course and the lab used 
Neuroscience: Exploring the Brain, 3

rd
 Ed., by Bear, 

Connors, and Paradiso (2007). 
 
Students: The class began with 24 students (18 females) 
and concluded with 22 students (16 females).  There were 
15 psychology majors, three biology majors, two health 
and exercise science majors, two who were undecided on 
their major, and two international exchange students 
without information on major or year.  This distribution is 
similar to other neuroscience related courses taught out of 
psychology departments (Wolfe, 2009).  Of the non-foreign 
students, two were seniors, four were juniors, 13 were 
sophomores, and three were freshmen.  The two students 
who dropped were both sophomore psychology majors.  
Students were assigned to groups of three after filling out a 
questionnaire on prior classes and which other students 
they would or would not like to work with.  Students 
remained in these groups throughout the semester. 
 
Software: All computer simulations were run using 
MATLAB R2013b.  MATLAB requires purchase through an 
educational license in order to be used in classroom 
settings (http://www.mathworks.com/academia/).  The lab 
code was saved in script files within lab specific folders on 
laptops provided to the students.  The code was also 
available on a course specific website for download if 
students needed to complete the exercises outside of class 
in a computer lab on campus.  The MATLAB software 
environment presents the experimental code in an editor 
window that can be opened directly by clicking on the 
correct file in the provided folder.  Students are then asked 
to save the file immediately while renaming it to include the 
initials of all group members.  The file could then be turned 
in after completion of the lab as part of required 
participation/data storage credit. 
     The program is run directly from the editor window and 
generally results in the creation of a figure window with 
task specific data curves.  From within the figure window 
students are often provided with relevant information 
pertaining to the current simulation in text format, such as 
the input current, and they can determine additional output 
information using figure tools, such as the data cursor.  
There exists a separate command window that allows for 
the output of results, such as the maximum value of a 
curve, as well as single lines of commands that students 
can enter in order to access information about variables, 
such as the membrane leakage resistance for a particular 
version of the model. 
 
Labs:  Overview  Across the whole semester there were a 
total of 12 lab periods, 10 that had specific labs the 

students completed and two involving aspects of their 
research proposal projects.  The student labs consisted of 
a mixture of computer simulations and also hands-on data 
collection.  This paper focuses on the computer simulation 
labs that took place during weeks 2, 4, and 8. 
     The timing of the labs corresponded with the timing of 
the course content with a particular emphasis made to 
perform the labs prior to the relevant information being 
included on the course exams.  To that end, simulations of 
the Hodgkin-Huxley equations were done during lab 2 and 
took place prior to exam 1, simulations of the Integrate-
and-Fire model were done during lab 4 and took place prior 
to exam 2, and simulations of Hopfield Memory Networks 
were done during lab 8 and took place prior to exam 3.  
The duration of the labs varied based on the amount of 
material covered but also based on the speed at which 
particular student groups were able to work through the 
required material.  In general, the completion of the 
protocol was timed to take from 30 to 50 minutes with an 
additional 15 to 30 minutes required to complete group 
questions, leaving sufficient time to put away the 
equipment and complete short (~5 minutes) pre- and post-
lab surveys in the 90 allotted minutes.  The primary focus, 
structure, and group exercises of each of the three labs will 
be discussed below. 
     Hodgkin-Huxley Model The Hodgkin-Huxley equations 
(Hodgkin and Huxley, 1952) were used to focus on the 
concepts of spike thresholds, spike rate, and how ion-
specific membrane conductances relate to the different 
phases of an action potential.  This material is often 
covered early in introductory neuroscience courses (it is 
Chapter 4 in the course textbook).  It was done the week 
after the initial lab that used a hands-on demonstration of 
action potential spiking with a Spiker Box 
(https://backyardbrains.com/; Marzullo and Gage, 2012) 
which had a focus of spike rates and action potentials as 
electrical phenomena.  Students were provided with a fully 
functioning set of code to use in the labs and a written 
protocol that they were required to read prior to coming to 
lab (see supplementary materials).  Students were initially 
introduced to the code by opening up the relevant file and 
then running the program. 
     The protocol walked students through the process of 
modifying one or two variables at a time in order to 
visualize the effect on spiking behavior of the model 
neuron.  For spike thresholds, students were instructed to 
change the level of input current to a value well below 
threshold (e.g., “Change line 8 to ‘I=0.01’; and hit run.”) that 
would result in a time course of the membrane voltage 
without a clear spike (see Figure 1A).  They were then 
instructed to increase the input current incrementally until 
they reached a current level for which a single spike 
occurred (see Figure 1B) and to record that value on their 
data note sheet.  Following this they were instructed to 
continue to increase the input current incrementally until a 
second spike occurred (see Figure 1C) and record that 
value on their data note sheet.  Though the instructions 
allowed for an answer to be found in an algorithmic manner 
by repeatedly increasing by a small step size, students 
were free to locate the threshold values by jumping the 
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Figure 1.  Representative outputs for different components of the Hodgkin-Huxley lab.  The line each graph represents the membrane 
potential for the first 30 ms of simulation.  A. For subthreshold levels of input current (e.g., 0.02), there is no action potential.  B. For 

higher levels of input current (e.g., 0.05) there is only a single action potential.  The threshold for the first action potential is at a 
somewhat lower level.  C. For even higher levels of input current (e.g., 0.10), there are repetitive action potentials at a constant firing 
rate.  D. The timing of the action potentials can be found using the data cursor (represented by the circles) based on the X value of the 
data plot.  E. The effects of minimizing the permeability of the membrane to potassium only can be seen by recording the membrane 
voltage (Y) near the peak level and then at the stabilized level.  F. The effects of minimizing the permeability of the membrane to 
sodium only can be seen by comparing the membrane potential (Y) near the peak level to the peak level in the original equations (D). 

 
current levels by varying amounts and often started doing 
so as they progressed through the exercises. 
     In addition to visualizing qualitative changes in the 
model output, students engaged in exercises to record 
quantitative changes in output.  For spike rates, the input 
current was set at a value above the threshold for 
generating two spikes and then the data cursor component 
of the figure window was first used to locate the timing of 
one spike, then the timing of the other spike (see Figure 
1D).  These values were recorded on the data note sheet 
for later conversion to firing rates.  To complete the 
exercise, students were instructed to increase the input 
current to higher levels in order to determine a maximum 
firing rate for the model.  For ion-specific membrane 
conductance, students were required to modify one of the 
lines of code specifying the membrane  conductance for a 
particular ion (e.g., "Change line 9 to ‘gbarNa=0’") and then 
change the input current to pre-specified values.  
Quantitative measures of the effect this had on particular 
phases of the action potential were taken again using the 
data cursor but this time based on the initial rise in 
membrane potential and later settling value for when there 
was no potassium conductance (see Figure 1E) and when 
there was no sodium conductance (see Figure 1F). 
     Integrate-and-Fire Model A simple version of an 
integrate and fire neuron (Abbot, 1999) was used to focus 
on the concepts of post-synaptic potentials and temporal 
summation in addition to reviewing concepts of firing rates 

and action potentials as electrical phenomena.  This lab 
was done the week after a hands-on lab with an emphasis 
on firing rate and conduction velocity using human 
electromyography and corresponded to content covered in 
Chapters 4 and 5 of the textbook.  There was intentional 
repetition of quantitative and qualitative data analysis 
techniques involving recording the time between spikes for 
firing rates and thresholds of initial spikes as these 
techniques were considered key concepts and foundational 
research skills. 
     Specific code was created to explore the concepts of 
excitatory post-synaptic potentials (EPSPs) and inhibitory  
post-synaptic potentials (IPSPs) separately.  This was 
done in order to create topic specific graphs that focused in 
on the concept of interest for a specific portion of the 
exercise.  For EPSPs, the code allowed for the 
independent specification of the magnitude, i.e., input 
current, and timing, i.e., relative delay, of two short duration 
(2 ms) inputs.  This was used to demonstrate how two very 
large EPSPs would not require temporal summation in 
order to reach threshold (see Figure 2A), but that two 
smaller EPSPs would not result in an action potential (see 
Figure 2B) unless they were sufficiently close together in 
time (see Figure 2C). 
     The variables of the model, such as capacitance and 
leakage resistance, were also modified to demonstrate the 
role they play in temporal summation.  Students recorded 
the threshold level for the input current or time delays that  
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Figure 2.  Representative outputs for the temporal summation 
component of the Integrate-and-Fire lab.  The line in the top row 
of graphs represents the membrane voltage for the first 100 ms of 
simulation and the line in the bottom row of graphs corresponds 
to the magnitude and time course of the EPSPs.  A. An action 
potential occurs after each high magnitude EPSP (e.g., 7).  B. For 

medium levels of EPSP (e.g., 4) at the same temporal distance 
apart as in (A), no action potentials occur.  C. For medium levels 

of EPSPs (e.g., 4) that occur closer together in time, a single 
action potential occurs due to temporal summation. 

 
were required to result in action potentials.  For IPSPs, the 
code was primarily set up to manipulate the timing of a 
transient change in the leakage resistance that served to 
abolish any buildup of membrane potential towards 
threshold, i.e., shunting inhibition.  This was used to 
demonstrate that IPSPs that occur prior to the EPSPs (see 
Figure 3A) or after both of the EPSPs (see Figure 3C) have 
no effect on temporal summation, but those that occur 
between the EPSPs do not allow for temporal summation 
to occur (see Figure 3B).  Students systematically changed 
the variable controlling the time of the IPSP and recorded 
the range of time for which the IPSPs resulted in an action 
potential not occurring. 
     Hopfield Memory Network Model A minimal version of 
the Hopfield memory network (Hopfield, 1982) was used to 
demonstrate the principles of neural networks and memory 
retrieval.  It is essentially based on the principles of 
Hebbian learning in the establishment of connections 
between nodes of the network such that the nodes that are 
regularly on or off together within a particular set of 
memories will have stronger synaptic connections than 
nodes that are uncorrelated.  However, the basic Hopfield 
memory network is focused to a much greater degree on 
memory retrieval than memory formation/learning, as the 
synaptic connections are entirely determined by the set of 
memories presented to the network and remain constant.  
The simulations that evolve over time are based on the 
updating of the states of the nodes from an initial input 
state towards a stable memory state.  Along those lines, 
the lab itself was primarily focused on determining the 
robustness of the memory network in the correct retrieval 
of memories in relation to different levels of input noise.  
The protocol and lab questions included sections on 
Hebbian learning in relation to the functioning of the neural 
network. 
     Different sets of code were set up that involved different 
numbers of memories with distinct tasks associated with  

 
 

Figure 3.  Representative outputs for the shunting inhibition 
component of the Integrate-and-Fire lab.  The line in the top row 
of graphs represents the membrane voltage for the first 100 ms of 
simulation, the line in the middle row of graphs represents the 
magnitude and time course of the EPSPs, and the line in the 
bottom row of graphs represents the time course of the IPSPs as 
a complete shunting of all membrane voltage.  A. The timing of 

the IPSP (5 ms) is before the first EPSP (10 ms) and temporal 
summation is possible.  B. The timing of the IPSP (20 ms) is in 
between the first EPSP (10 ms) and the second EPSP (30 ms) 
and temporal summation does not occur.  C. The timing of the 

IPSP (35 ms) is after the second EPSP (30 ms) and temporal 
summation is possible. 
 
each number of memories.  The initial code had four 
memories visually represented as black letters on a white 
background.  This code primarily involved walking students 
through the basics of how the network functioned.  This 
included a demonstration of how small numbers of errors 
from the initial state (e.g., two out of 25 neurons having 
reversed on/off states; see Figure 4A) resulted in the 
successful retrieval of the memory in the stable state of the 
network whereas large numbers of errors from the initial 
state (e.g., 10 out of 25 neurons having reversed on/off 
states; see Figure 4B) resulted in an incorrect memory 
state being stabilized.  This also included students setting 
their own criterion for how the performance would be 
evaluated by setting thresholds that defined whether the 
model worked for a given level of noise based on the 
percentage of matching nodes and/or the percentage of 
exact memory matches.  In order to quantitatively measure 
this, a related but distinct set of code was run that 
conducted 10,000 simulations (which takes only a few 
seconds) and reported the overall performance of the 
network (based on the proportion of matching nodes and 
the relative frequency of exact matches). 
     The next set of code had two memories and primarily 
involved students making educated guesses about how 
well the memory system would perform based on different 
pairs of memories (see Figure 5) in relation to what they 
had thus far learned in the lab in regards to the synaptic 
connections of the neural network.  Students essentially 
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make their choice based on whether memories will be 
successfully retrieved more frequently if there are higher or 
lower amounts of consistent node states between the 
pairs.  The amount of consistent node states is provided for 
them numerically in the command window in addition to the 
visual representation shown in a figure window.  The final 
set of code had six memories with the students required to 
choose a pattern of on/off node states to represent two 
new memories of their choosing and then enter them into 
the code at clearly marked locations.  Following this the 
same procedure was conducted as in earlier portions of the 
exercise whereby the network was simulated 10,000 times 
and the output was reported in the command window for 
students to enter into their data note sheets. 
 

 
 

Figure 4.  Example outputs of the Hopfield Memory Network lab.  

Each graph shows the activation for 25 nodes in a 5x5 grid where 
white indicates a particular node is “on” and black indicates a 
particular node is “off.”  The initial state refers to the input prior to 
noise and is the correct state for the network to end up in if it 
successfully retrieves the memory.  The error state shows how a 
subset of the nodes are flipped from the initial state and is the 
actual input to the memory network.  The stable state is the 
output of the memory network.  The network clearly worked if the 
stable state exactly matches the initial state and clearly did not 
work if a different memory state was retrieved.  A. The typical 

performance based on 4 memories and a low level of noise (2 
flips) with the stable state matching the initial state.  B. The typical 

performance based on 4 memories and a high level of noise (10 
flips) with the stable state clearly different from the initial state. 
 

 
 
Figure 5.  The pattern of network activation for the two memory 

exercise within the Hopfield Memory Network lab.  Students were 
instructed to pay attention to the relative overlap in the patterns 
for Pair 1 (D vs. M) and Pair 2 (J vs. C). 

 
Surveys: In order to document the level of how 

comfortable students were with the MATLAB environment 
and assess the amount of student learning on certain key 
concepts, short surveys were passed out and voluntarily 
completed at the beginning and end of each lab section.  
The pre-lab surveys each contained three questions with a 
consistent format.  The first two questions pertained to the 
level of understanding for key concepts to be covered in 
the lab with responses on a scale from 0 (no 

understanding) to 10 (complete understanding) with only 
the extreme values labeled.  The last question pertained to 
how comfortable the students were with the hardware or 
software utilized in that day’s lab with responses on a scale 
from -5 (very uncomfortable) through 0 (neutral) to 5 (very 
comfortable) with only those three values labeled.  The 
post-lab survey repeated the three questions from the pre-
lab survey and for each of those questions students were 
also asked how much the current lab influenced their 
understanding or comfort on a scale from -5 (understand it 
much less/much less comfortable) through 0 (no change) 
to 5 (understand it much more / much more comfortable) 
with only those three values labeled. 
     The questions pertaining to level of understanding of 
concepts were lab specific whereas the final question 
relating to comfort levels on the software was identical 
across all three labs.  For the Hodgkin-Huxley lab, the 
concept questions were “How well do you understand the 
concept of thresholds for generating action potentials?” 
and “How well do you understand the concept of different 
ions influencing parts of action potentials?”.  For the 
Integrate-and-Fire lab, the concept questions were “How 
well do you understand the concept of thresholds for 
generating action potentials?”, which was a repeat from the 
Hodgkin-Huxley lab, and “How well do you understand the 
concept of EPSPs and IPSPs in relation to action 
potentials?”.  For the Hopfield Memory Network lab, the 
concept questions were “How well do you understand the 
concept of memory storage in neural networks?” and “How 
well do you understand the concept of retrieval failure in 
neural networks?”.  For all three labs, the final question 
was “How comfortable are you with using MATLAB – a 
command line computer programming software language?” 
     Students were informed at the beginning of the 
semester via email and in the class and reminded 
repeatedly throughout the semester that participation in the 
surveys was voluntary and would in no way affect their 
grades on the labs.  Student names were included on the 
surveys in order to pair the pre-lab surveys with the post-
lab surveys and to track changes in responses across labs.  
However, the surveys were inputted into an Excel sheet 
without the corresponding student names and the faculty 
member did not review the responses of the students until 
after the semester was completed.  This data collection 
was approved by the Internal Review Board of Roanoke 
College. 
 

RESULTS 
There were 23 students in the course for labs 2 and 4 and 
22 students for lab 8.  All 23 students completed the pre- 
and post-surveys for lab 2 (Hodgkin-Huxley equations).  
While 22 students completed the pre-survey for labs 4 
(Integrate-and-Fire model) and 8 (Hopfield Memory 
network), only 21 completed the post-survey.  Only 18 
students completed all six surveys.  Analyses were done 
with t-tests for individual survey questions based on all 
students who completed that particular question and 
Repeated Measures ANOVAs for sets of questions based 
on only the subset of students who completed all relevant 
questions.  Reports of significance are based on α=0.05. 
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Comfort with MATLAB: As MATLAB was used 
consistently across all three computer simulation labs, the 
same question was asked for all six surveys regarding how 
comfortable the student was with using MATLAB at the 
time that the survey was taken.  Additionally, for all three 
post-lab surveys, the same question was asked regarding 
how much they felt that particular lab influenced their 
comfort level.  The level of comfort that students would 
come into the course with was expected to be fairly low 
based on anecdotal student reactions to similar labs in a 
previous semester.  A somewhat low initial comfort level 
would allow for increases or decreases in the level of 
comfort across the semester.  Measuring comfort level 
across multiple labs also allows for student comfort levels 
to remain constant or show saturation after a limited 
number of labs on an individual basis. 
      95% confidence intervals for the level of self-reported 
comfort on a scale from -5 (very uncomfortable) through 0 
(neutral) to 5 (very comfortable) on each lab survey are 
shown in the left portion of Figure 6A.  Clearly evident in 
the graph is that students on average started off not 
significantly different from a neutral comfort level for lab 2 

(  =-0.8, t(22)=-1.40, p=0.174) and lab 4 (  =0.7, t(21)=1.33, 
p=0.197), but they were comfortable at the start of lab 8 
(  =2.2, t(21)=5.73, p<0.001).  By the end of each of the 
labs, however, the comfort level was significantly above 
neutral (  ’s>2.1, t’s(20)>5.6, all p’s<0.001). 
     In order to assess differences between the labs, a 2x3 
Repeated Measures ANOVA was run with the time of the 
survey (pre, post) and the week of the lab (2, 4, 8) as 
factors.  Mauchly’s Test of Sphericity indicated that the 
assumption of sphericity was violated for both the week of 
the lab factor (Χ

2
(2)=13.35, p=0.001) and the interaction 

(Χ
2
(2)=6.61, p=0.037).  Therefore, the Lower-bound 

correction with the degrees of freedom reduced by half will 
be reported as a highly conservative correction.  There was 
a main effect of time of the survey (F(1,18)=75.553, 
p<0.001) with post-lab ratings on average 2.14 rating 
points higher than pre-lab ratings.  There was also a main 
effect of week of the lab (F(1.0,36)=12.729, p=0.002) 
explained by a linear effect (F(1,18)=21.695, p<0.001) 
wherein the comfort level increased across the labs.  
Comfort levels increased from lab 2 to lab 4 by 1.08 rating 
points (p=0.049) and from lab 4 to lab 8 by 1.00 rating 
points (p<.001).  Furthermore there was an interaction 
effect (F(1.0,36)=4.867, p=0.041) explained by a linear 
effect (F(1,18)=14.329, p=0.012) wherein the difference in 
pre-post comfort level decreased as a function of the week 
of the lab.  The difference in comfort levels for lab 2 was 
2.94 rating points, for lab 4 was 2.26 rating points, and for 
lab 8 was 1.21 rating points. 
     In addition to the difference in comfort levels between 
the pre and post surveys, data was also collected on how 
much students felt that each particular lab influenced their 
comfort level.  As can be seen in the right portion of Figure 
6A, the students on the whole reported that each lab 
resulted in a positive change in their comfort level (  ’s>2.6, 
t’s(20)>8.0, all p’s<0.001).  In order to compare across 
labs, a one-way Repeated Measures ANOVA was run.  
Since the assumption of sphericity was again violated  
 

 

 
Figure 6.  Results of questions pertaining to the self-reported 

comfort level working with the MATLAB programming language.  
A. The set of bars on the left shows the level of comfort before 

and after the labs were completed averaged across all students.  
The scale is from Very Uncomfortable (-5) through Neutral (0) to 
Very Comfortable (5).  The bars on the right show the degree to 
which students felt that week’s lab contributed to their level of 
comfort with MATLAB.  The scale is from Much Less Comfortable 
(-5) through No Change (0) to Much More Comfortable (5).  Error 
bars indicate the 95% confidence interval for each of the separate 
survey questions.  B. Frequency distribution of students across 

comfort levels before the first computational simulation lab (Lab 2 
pre) and at the end of the final computer simulation lab (Lab 8 
post).  The scale is from Very Uncomfortable (-5) through Neutral 
(0) to Very Comfortable (5). 

 
(Χ

2
(2)=7.21, p=0.027), the marginally significant main 

effect of week of the lab (Lower-bound correction: 
F(1.0,36)=3.814, p=0.067; Sphericity assumed: 
F(2,36)=3.814, p=0.031) needs to be considered with 
caution.  Similarly, though a linear trend was again 
indicated (F(1,18)=4.80, p=0.042), neither the change from 
3.53 to 3.00 for labs 2 and 4 (p=0.086) nor from 3.00 to 
2.68 for labs 4 and 8 (p=0.187) was statistically significant.  
Overall this indicates that there was a less consistent 
relationship between the week of the lab and how much 
students reported that each lab contributed to their comfort 
level than in the observed difference in the pre- vs. post-lab 
comfort levels.  This could be explained by students 
believing that each lab improved their comfort levels even 
as they ran out of room to convey that difference in the pre- 
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vs. post-lab comfort levels.  That is, reporting change after 
each lab may be helpful in avoiding ceiling effects when 
just considering differences in the pre- vs. post-lab comfort 
levels. 
     The above analysis demonstrates that comfort levels 
with MATLAB increased within each of the labs and across 
the sequence of labs.  To further illustrate this, the 
distribution of reported comfort levels for the first survey 
and last survey are shown in Figure 6B.  A substantial 
proportion of the students (11/23) reported being 
uncomfortable using MATLAB prior to the first 
computational simulation lab whereas nearly all (20/21) 
reported being comfortable after the final computational 
simulation lab.  The trend for a decrease in the amount that 
each week’s lab contributed to a student’s overall comfort 
level could then be expected to be due to an increase in 
the number of students who were comfortable with 
MATLAB at the start of each lab. 
 
Understanding of concepts: For each of the labs, 

questions were asked about the level of understanding of 
two specific key concepts and also about the contribution 
of that particular lab to their level of understanding.  The 
timing of the labs was such that relevant concepts had 
already been covered in the lecture portion of the class for 
labs 2 and 4 but not for lab 8.  Correspondingly, the self-
reported level of understanding of the two concepts on the 
pre-surveys was relatively high for labs 2 and 4 (7.0, 7.2, 
7.4, and 6.3, respectively, on a scale from 0 to 10) and 
lower for lab 8 (4.8 and 5.9).  Still, there was a significant 
increase in the rating scales for the pre- to post-lab levels 
of understanding for all concept questions (  ’s>0.8, 
t’s(20)>2.7, all p’s<0.02) and students reported that each 
lab increased their level of understanding on that concept 

(  ’s>2.1, t’s(20)>7.9, all p’s<0.001). 
 

DISCUSSION 
Students in neuroscience come from a broad range of 

majors, many of which do not require computer science 

courses.  Therefore, it is worth considering what factors 

may contribute to how quickly and to what degree students 

can become comfortable working with code.  Based on the 

starting and ending levels of comfort, it can be inferred that 

inexperience working with code is not a hindrance to using 

it during labs and that a series of labs is likely useful for 

increasing comfort levels.  It is an encouraging sign that 

students can become comfortable with code-based 

exercises as computational thinking is a foundational skill 

required for the next generation of scientists (Wing, 2006). 

     The rate at which comfort level changes could be 

influenced by whether labs are completed individually or in 

groups, with the group size a further contributing factor.  

Here groups were generally three people though 

occasionally groups of two were used due to students 

dropping the course or being absent.  Groups were 

encouraged to alternate which student was primarily in 

charge of controlling the MATLAB program as the lab was 

completed, and anecdotally it seemed that controlling the 

program helped increase student comfort level more than 

simply watching another student use the program due to 

an increase in active engagement. 
     One of the proposed benefits of computational 
simulation labs is that they can be inquiry-based, 
hypothesis-driven exercises (Crisp, 2012; Lemons, 2012; 
Lewis 2014).  The current set of labs is largely protocol 
driven and not inquiry-based, but that is in part due to the 
small amount of time (90 minutes) allotted to the lab 
periods.  For a longer lab period (2-3 hours), it is entirely 
conceivable that the first half could be devoted to 
familiarizing students with the computational models using 
a protocol and that the second half could be devoted to 
answering an empirical question of the students’ choosing.  
The neuroscience curriculum at Roanoke College requires 
a semester long research project, so the inquiry-based 
training is largely done at that time rather than during the 
lab component of the introductory level course. 
     Computational simulations are a worthwhile and helpful 
component of an undergraduate neuroscience lab course 
(Lewis, 2014).  They are inherently reliable since the 
results will consistently come out the same when the same 
values are put into the model equations, which cannot be 
said for hands-on neuroscience with live animals, though 
stochastic noise can also be added to the equations in 
order to approach biological realism.  They are valid in so 
much as they truly represent the principles being 
simulated, which cannot be guaranteed with hands-on 
neuroscience when artifacts are possible in the data due to 
the equipment or experimenter error.  A benefit of code-
based simulations in relation to compiled simulations is that 
they are adaptable such that the activities can be easily 
modified to fit the expectations/concepts covered in a 
particular class.  MATLAB in particular is a powerful yet 
approachable programming environment with a low cost in 
comparison to standard hands-on neuroscience 
equipment, but Python is an adequate alternative for 
programs without the budget to purchase MATLAB or with 
faculty already familiar with working in Python.  Students 
are likely to be amenable to becoming familiar and 
comfortable with whatever coding software is used in the 
labs.  Early exposure can lead to future opportunities to 
further knowledge using code, such as in undergraduate 
research projects, graduate school, or jobs. 
 

Supplementary Materials 
The MATLAB code, all associated assignment files, 
descriptions of the assignment files, and links to resources 
for comparable Python code can be found at the author’s 
faculty page: 
https://directory.roanoke.edu/faculty?username=dnichols. 
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